Computer Science and Mathematics Summer term 2012

Exercises 2

1. The following sets are sets of number pairs, i.e., subsets of the cartesian product $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$:

$$A := \{ (x, y) \in \mathbb{R}^2 \mid y = \frac{2}{3}x - 2 \}$$

$$B := \{ (x, y) \in \mathbb{R}^2 \mid y = -|0.5x| + 1 \}$$

$$C := \{ (x, y) \in \mathbb{R}^2 \mid x \ge 0 \land -x + 3 \ge y \ge 0 \}$$

- (a) Visualize each of the sets *A*, *B*, *C* in the cartesian coordinate system. (Make a separate graphical image for each set.)
- (b) All these sets are relations. Which of them are even functions?

2. Let P be the set of all participants of a party and D the set of all drinks which are offered there. Each participant p_i ∈ P shall get a drink d_i ∈ D according to his/her preference. In this way, a mapping f: P → D shall be defined. What do the following possible properties of f mean in this context?
(a) surjectivity
(b) injectivity
(c) bijectivity
(d) Can a participant of the party get two different drinks?

- 3. Let $f: D \to R$ be the function described by $f(x) = 2x^3 1$. The domain *D* is defined as $D := \{ x \in \mathbb{R} \mid -3 \le x < 2 \}$. Determine (a) the range R := f(D),
 - (b) a formula for the inverse function f^{-1} .
- 4. (a) Calculate the decimal value of the binary number 1001111.
 - (b) Calculate the hexadecimal representation of the decimal number 999.
 - (c) What is the binary expansion of the value 1/3 ?(Hint: You can do "written division" analogously to the decimal case, but with doubling the remainder in every step instead of multiplying by 10.)

5. Let
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

- (a) Draw \vec{a} and \vec{b} in a coordinate system.
- (b) Determine $2 \cdot \vec{a} + \vec{b}$ by calculation and graphically.
- (c) Let $\vec{c} = \begin{pmatrix} 1 \\ -11 \end{pmatrix}$. Find a representation of \vec{c} as a linear combination of \vec{a} and \vec{b} .
- 6. Let $\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. What geometrical objects are described by the following sets? (a) { $\vec{b} + t \cdot \vec{a} \mid t \in \mathbb{R} \land t \ge 0$ } (b) { $\vec{x} \in \mathbb{R}^2 \mid \vec{a} \cdot \vec{x} = 0$ } (c) { $\vec{x} \in \mathbb{R}^2 \mid ||\vec{x} - \vec{b}|| = 0.5$ }

- 7. (a) Are the vectors $\vec{a} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -3 \\ -2 \\ 5 \end{pmatrix}$ and $\vec{c} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$ linearly independent?
 - (b) What is the maximal number of vectors which can be linearly independent in \mathbb{R}^4 ?
- 8. The points A = (1; 3), B = (11; 7) and C = (3; 13) are given in the cartesian coordinate system.
 - (a) Let A be the new zero (origin) and calculate the vectors $\vec{b} = \overrightarrow{AB}$ and $\vec{c} = \overrightarrow{AC}$.
 - (b) Calculate the vector $\vec{d} = \vec{b} + \vec{c} = \overrightarrow{AD}$ and the absolute coordinates of the new point *D*.
 - (c) Calculate the inner product $\vec{b} \cdot \vec{c}$ and the angle $\angle(\vec{b}, \vec{c})$.
 - (d) Extend the vectors by a third dimension (with value 0) and calculate the cross product $\vec{b} \times \vec{c}$.
 - (e) Calculate the area of the parallelogram spanned by \vec{b} and \vec{c} .