
Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Relational Growth Grammars and the
Programming Language XL

Ole Kniemeyer

July 26, 2007

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Outline

Motivation

Relational Growth Grammars
Integrating Graph Grammars
Integrating L-Systems

Programming Language XL
Rule = Query → Statements with Special Syntax
Queues Implement Parallelism

Applications of XL
Relational Growth Grammars
Vertex-Vertex Algebras

Conclusion and Outlook

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Motivation behind Relational Growth Grammars

I L-systems are quite successful, but based on plain strings.

I Modern representation of 3D worlds: scene graphs

Combine L-systems and graphs: parallel graph grammars

I Intensively studied in the mid and late 1970s

I Fell into desuetude

I L-systems still in active use

I Revival of parallel graph grammars needed!

Relational growth grammars (RGG) are an attempt for such a
revival.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Integrating Graph Grammars

Graph Grammars

I Operate on graphs.

I Productions (rules): L→ R with graphs L,R

I Some embedding specification: how to connect R with rest?

Embedding of gluing type: identification of parts of L and R

L1

a
�� ��A

x
�� ��X //

OO

y
�� ��X

//

R1

a
�� ��A

x
�� ��X //y

�� ��X

OO

L2

i
�� ��G //j

�� ��G

k
�� ��G //l

�� ��G

//

R2

i
�� ��G

!!CCC
C

j
�� ��G

k
�� ��G

=={{{{
l
�� ��G

I Relatively easy to understand.

I Not suitable if R makes no reference to L (L-system rules!)

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Integrating Graph Grammars

Graph Grammars

Productions with gluing: pure algebraic theory possible

I Production L→ R

I Identification p : L→ R

I Current graph G

I Match m : L→ G

⇒ derived graph H as pushout L
p //

m

��

R

m∗

��

G
p∗

// H

Allows quite elegant and abstract constructions and proofs.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Integrating Graph Grammars

Parallelism

How to apply productions in parallel?

I Given pairs (pi ,mi) of productions pi : Li → Ri and
matches mi : Li → G

I Parallel derivation is well defined by production
∑

i pi and
match

∑
i mi

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Integrating L-Systems

L-system strings with brackets as graphs

Represent strings directly as graphs! A[BC]DE becomes to

B // C

A //

??�
�

�
�

D // E

L-system production X → A[BC]DE becomes to

B // C

X → A //

??�
�

�
�

D // E

Problem: no identification between L and R
Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Integrating L-Systems

Connection transformation as embedding

Connection transformations establish desired edges:
X → AB

U // X // X // V

U // A // B // A // B // V

I Move incoming edges from X to A.

I Move outgoing edges from X to B.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Programming language XL as extension of Java

XL: complete extension of Java

Design guidelines: generality and smooth integration into Java

Generality:

I not only suitable for a fixed graph model

I not only suitable for relational growth grammars

Smooth integration into Java:

I consistent syntax, following the C tradition

I possibility to mix old Java and new XL code

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Rule = Query → Statements with Special Syntax

Rules within XL and a unified view thereof
Three diffent kinds of rules are defined:

I structural L-system-like rule

Bud ==> Internode [RU(40) Bud] Bud;
I structural graph rule with gluing

Gene i, j, k, l;
i j, k l, i -aligned- k ==>> i l, k j;

I execution rule

x:Tree ::> x.age++;

Right-hand sides can be viewed as sequences of statements.
Common structure of rules:

I left-hand side: query in current structure

I right-hand side: statements

Special syntax for right-hand sides of structural rules!
Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Rule = Query → Statements with Special Syntax

Structure queries find occurences of patterns

F(len) find all nodes of class F, bind value of
its length to local variable len

x:Cell [a:Ant] y:Cell find all consecutive Cells such that
an Ant sits on the first Cell

a:Ant -sees-> b:Ant find all pairs of Ants such that the
first sees the seconds

I textual notation

I syntax resembles syntax of L-systems
I composed of predicates

I Cell: type predicate
I F(len): module predicate
I -sees->: relational predicate implemented by boolean method

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Rule = Query → Statements with Special Syntax

Structure is defined by data model

I Queries access structure through data model interface.

I Interface can be implemented for every graph-like structure:
real graphs, trees, XML documents, . . .

I Ensures generality at the level of queries.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Rule = Query → Statements with Special Syntax

Right-hand sides are defined by operator overloading

Usual L-system syntax as ideal: A(x) ==> F(x) A(x*0.5)

Possible approximation with C++-style operator overloading:
producer << new F(x) << new A(x*0.5);
where producer is responsible for structure creation.

XL: special translation scheme for right-hand sides:

1. Implicit creation of new node instances:
producer new F(x) new A(x*0.5)

2. “Space operator” is mapped to method operator$space
producer.operator$space(new F(x))

.operator$space(new A(x*0.5))

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Rule = Query → Statements with Special Syntax

Further example for use of operators

x:X ==>> x > A -branch-> B;

1. Implicit creation of new node instances:
producer x > new A() -> (new B(), branch)

2. Mapping to method names
producer.operator$space(x)

.operator$gt(new A())

.operator$arrow(new B(),branch)

I Definition without any reference to data model

I Ensures generality at the level of right-hand sides.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Queues Implement Parallelism

How to implement parallelism?

Conflict for the implementation of parallelism:

I Computers (Java Virtual Machines) work sequentially.

I Graph has to remain constant during derivation.

Two solutions:

1. Derivation creates completely new graph (traditional solution
of L-system software).

2. Enqueue intended modifications, collectively apply them at
end of derivation to graph.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Queues Implement Parallelism

Best solution: several queues

Queue-based solution is more efficient.
Corresponds to application of parallel production = sum of
component productions.

Four queues for RGG:

1. Addition of connection edges

2. Addition of nodes, edges

3. Deletion of nodes, edges, dangling edges

4. Modification of properties

Order solves deleting/preserving conflicts in favour of deletion.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Relational Growth Grammars

Relational growth grammars implemented by XL

graph implementation

((PPPPPPPPPPPPPP four queues

uullllllllllllllll

XL

overloaded operators

66nnnnnnnnnnnnnn
node classes, utility functions

iiRRRRRRRRRRRRRRRR

Bud ==> Internode [RU(40) Bud] Bud;

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Relational Growth Grammars

Applications

Barley model City generator

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Vertex-Vertex Algebras

Vertex-vertex algebras implemented by XL

inherit RGG

''PPPPPPPPPPPPPP single queue

vvnnnnnnnnnnnnnn

XL

overloaded operators

77nnnnnnnnnnnnn
graph rotation system

hhPPPPPPPPPPPPPP

... v [p r q], r v in p, q v in r, p v in q;

I No need for copy of “old graph”.

I Rule-based instead of imperative formulation.

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Vertex-Vertex Algebras

Potential application

Shoot apical meristem:
application of auxin, development of primordia

(from Smith et al.: A plausible model of phyllotaxis (2006))

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Conclusion
Relational growth grammars:

I Parallel graph grammars

I L-systems as special case

XL:

I Programming language extending Java

I Queries find matches for patterns in structure,
structure defined by data model interface

I Operator overloading

RGG implemented on the basis of XL:

I Implementation of data model interface for graphs

I Implementation of operator overloading methods

I Usage of queues to achieve parallelism

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

Outlook

I Three-dimensional meshes (volumes)

I Interfacing with differential equations

I Usage of graph scheme to check consistency

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

Motivation Relational Growth Grammars Programming Language XL Applications of XL Conclusion and Outlook

The End

Thank you for your attention!

Ole Kniemeyer

Relational Growth Grammars and the Programming Language XL

	Motivation
	Relational Growth Grammars
	Integrating Graph Grammars
	Integrating L-Systems

	Programming Language XL
	Rule = Query Statements with Special Syntax
	Queues Implement Parallelism

	Applications of XL
	Relational Growth Grammars
	Vertex-Vertex Algebras

	Conclusion and Outlook

