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Motivation

● Plant growth depends on
– Structural constraints

– Lighting

– Nutrient distribution

● Simulation of nutrient distribution consists of
– Transport

– Chemical Kinetics



  

Chemical Kinetics

● Describes change of concentration over time
● Experimental determination of reaction rates
● Simulation by transforming chemical reactions 

into differential equations
● Depends on conditions:

– Physical state (solid, liquid, gas)

– Concentration (according to collision theory)

– Temperature

– Catalysts, pH-Value, ...



  

Investigation of Kinetics of a 
Chemical Reaction

1.Determination of reaction rate by measurement 
of substrate concentrations at different times; 
calculation of rate constants.

2.Finding a relation between measured 
reaction rates.



  

● General chemical reaction:

● Rate of reaction:

Rate of Reaction
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First Investigations

● In 1850 by Ludwig Wilhelmy: 
inversion of saccharose acid solutions

● Observation of reaction by polarimeter
● Result:

● k is the rate coefficient, proportional to 
concentration of acid (acid is catalyst)

H 2OC12H 22O11C6H 12O6C 6H 12O6

Saccharose Glucose Fructose

dc
dt

=−k c



  

Chemical Equilibrium

● In 1863 application to chemical equilibrium by 
C. M. Guldberg and P. Waage

● Chemical equilibrium is result of compensation 
(of forward and backward reaction)

● In equilibrium:

● Van't Hoff:
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Further Investigations

● 1865 to 1867: Investigation of reaction between 
potassium permanganate and oxalic acid by
A.V. Harcourt and W. Esson

● Conclusion:
Stoichiometric reactions do not allow 
inference of chemical kinetics!

● →Theory of consecutive reactions

2MnO4
−
5COOH 26H

2Mn2
10CO28H 2O

v=k [MnO4
−
][COOH 2]



  

Experimental Methods of 
Chemical Kinetics

● Reaction under same conditions in different 
vessels in parallel

● Extraction of small samples during the reaction
● Measurement of physical properties during the 

reaction:
– Colour, absorption

– Index of refraction, optical rotation, polarization

– Volume, pressure, temperature



  

Order of Reaction

● Experiment yields values of concentration for 
different times

● Rate of reaction is a function of concentrations:

● Rate of reaction depends on the product of 
concentrations:

● Order of reaction is the sum of the exponents, 
so

dc1

dt
= f c1 , c2 , ... , cn

dca
dt

=−k cA
a cB

b ...cN
n

ab...n



  

Example 1

● Decomposition of nitric pentoxide:

2N 2O5 4NO2O2

d [N 2O5]

dt
=−k 1[N 2O5]

⇒1st order reaction



  

Example 2

● Decomposition of nitrogen dioxide:

2NO22NOO2

d [NO2]

dt
=−k 2 [NO2]

2

⇒2nd order reaction



  

Example 3

C 2H 53 NC2H 5 BrC2H 54N
Br−

d [C2H 5 Br ]

dt
=−k 2[C2H 5 Br ][C 2H 53N ]

⇒2nd order reaction



  

Example 4

● Decomposition of acetaldehyde:

CH 3CHOCH 4CO

d [CH 3CHO]

dt
=−k 1,5 [CH 3CHO ]3/2

⇒1.5th order reaction



  

Conclusion

● There is no relation between the form of the 
stoichiometric equation and the reaction order 
of a chemical reaction.



  

Reaction Molecularity

● Neither stoichiometric equation nor the reaction 
rate can provide reliable information about the 
real chemism of a reaction.

● Often reactions have many intermediary steps
● Single steps of a complex reaction are called 

elementary reaction



  

Reaction Molecularity (2)

● unimolecular:
spontaneous decomposition of a molecule

● bimolecular:
collision of two molecules

➔ Reaction molecularity only meaningful for 
elementary reactions



  

Example of a bimolecular reaction

NOO3NO2O2

d [NO ]

dt
=−k 2[NO ][O3]



  

Reaction Mechanism

● Chain of consecutive elementary reactions
● Example:
● If this would be an elementary reaction, then it 

must hold:

● The experiment shows:

● Explanation:

2O33O2
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dt
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Simulation of Chemical Systems

● Results are the concentrations of substrates as 
a function of time

● Performed by numerical integration
● Chemical equations must be translated into 

differential equations
● Automatic translation does only work for 

elementary reactions



  

Simulation Framework



  

Simple Example

● Three substrates: A, B, C
● Two reactions:

A⇒B
B⇒C

● Differential equations:

d [A ]
dt

=−k 1[A]

d [B ]
dt

=k 1[A]−k 2[B ]

d [C ]

dt
=k 2[B ]



  

Same Example in XL
import static de.grogra.cells.ChemicalOperators.*;
import static de.grogra.cells.Molecule.*;
import de.grogra.cells.*;
import de.grogra.cells.solver.*;
import java.util.*;

// define new species X1, X2 and X3
const Molecule X1 = new Molecule("X1");
const Molecule X2 = new Molecule("X2");
const Molecule X3 = new Molecule("X3");

public void run ()
{

// define a new reaction: X1 -> X2
// rate coefficient is 2
ChemicalReaction r1 = X1 <=> X2;
r1.setForwardRateConstant(2);

...



  

Same Example in XL (2)
...

// instantiate a new simulation model
de.grogra.cells.Model model = 

new de.grogra.cells.Model();

// add the chemical reaction to the model
model.addSlope(r1);

// add another chemical reaction to the model
model.add(X2 <=> X3, 1);

// assign integers [0, count) to species
HashMap m = new HashMap();
int count = model.assignIndices(0, m);

// allocate memory for numerical simulation
double[] result = new double[count];
double[] y0 = new double[count];

...



  

Same Example in XL (3)
...

// set initial conditions
setValue(m, y0, X1, 10);

// initialise solver
RK4 rk4 = new RK4();
FixedStepSizeSolver fs = new FixedStepSizeSolver(

rk4, new Chart("concentrations", 10) {
public void plot(DatasetRef data, 

double t, double[] y) 
{

data.addRow().set(0, y[0])
.set(1, y[1]).set(2, y[2]);

}
}

);

// calculate solution
fs.init(count);
fs.solve(result, 0, 5, y0, model);

}



  

Screenshot



  

Second Example

● Irreversible Michaelis Menten:

● Differential equations:

ES⇔ESEP

d [S ]
dt

=−k 1[E ][S ]k−1[ES ]

d [E ]
dt

=−k 1[E ][S ]k−1[ES ]k 2[ES ]

d [ES ]
dt

=k 1[E ][S ]−k−1[ES ]−k 2 [ES ]

d [P ]
dt

=k 2[ES ]



  

Second Example in XL
const Molecule E = new Molecule("E");
const Molecule S = new Molecule("S");
const Molecule ES = new Molecule("ES");
const Molecule P = new Molecule("P");

...
// define michaelis menten kinetics
de.grogra.cells.Model model = 

new de.grogra.cells.Model();
model.add(E + S <=> ES, 3, 0.1);
model.add(ES <=> E + P, 2);

// set initial conditions
setValue(m, y0, E, 2);
setValue(m, y0, S, 10);

...
// calculate solution
fs.init(count);
fs.solve(result, 0, 5, y0, model);

}



  

Second Example after Simulation



  

Problems

● Law of mass action only valid for 
elementary reactions

● But observable reactions mostly are not 
elementary and intermediate steps are 
unknown

● Not valid under dimensionally-restricted 
conditions → fractal kinetics

● But reactions in plant-cells are dimensionally-
restricted


