
Workshop on modelling and visualisation of biological and chemical systems

Simulation of Chemical Reactions with GroIMP and XL

Brandenburgische Technische Universität Cottbus

Reinhard Hemmerling

BTU Cottbus Institut für Informatik LS Grafische Systeme

Outline

- 1.Motivation
- 2.Introduction to chemical kinetics
- 3. Specification of chemical systems in GroIMP
- 4.Discussion

Motivation

- Plant growth depends on
 - Structural constraints
 - Lighting
 - Nutrient distribution
- Simulation of nutrient distribution consists of
 - Transport
 - Chemical Kinetics

Chemical Kinetics

- Describes change of concentration over time
- Experimental determination of reaction rates
- Simulation by transforming chemical reactions into differential equations
- Depends on conditions:
 - Physical state (solid, liquid, gas)
 - Concentration (according to collision theory)
 - Temperature
 - Catalysts, pH-Value, ...

Investigation of Kinetics of a Chemical Reaction

- 1.Determination of *reaction rate* by measurement of substrate concentrations at different times; calculation of *rate constants*.
- 2.Finding a relation between measured reaction rates.

Rate of Reaction

• General chemical reaction:

$$a_1 A_1 + a_2 A_2 + \dots \rightarrow a_1 A_1 + a_2 A_2 + \dots$$

educts products

• Rate of reaction:

$$v = \frac{d\xi}{dt} = -\frac{1}{a_1} \frac{dn_1}{dt} = -\frac{1}{a_2} \frac{dn_2}{dt} = \frac{1}{a_1'} \frac{dn_1'}{dt} = \frac{1}{a_2'} \frac{dn_2'}{dt}$$

First Investigations

 In 1850 by Ludwig Wilhelmy: inversion of saccharose acid solutions

$$H_2O + C_{12}H_{22}O_{11} \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$$

Saccharose Glucose Fructose

- Observation of reaction by polarimeter
- Result:

$$\frac{dc}{dt} = -kc$$

• *k* is the rate coefficient, proportional to concentration of acid (acid is catalyst)

Chemical Equilibrium

- In 1863 application to chemical equilibrium by *C. M. Guldberg* and *P. Waage*
- Chemical equilibrium is result of compensation (of forward and backward reaction)

$$a A + b B \Leftrightarrow c C + d D$$
$$v_f = k_f [A]^a [B]^b$$
$$v_r = k_r [C]^c [D]^d$$

• In equilibrium:

 $v_f = v_r$ $k_f [A]^a [B]^b = k_r [C]^c [D]^d$

• Van't Hoff:

$$K = \frac{k_f}{k_r} = \frac{[A]^a [B]^b}{[C]^c [D]^d}$$

Further Investigations

• 1865 to 1867: Investigation of reaction between potassium permanganate and oxalic acid by *A.V. Harcourt* and *W. Esson*

 $2 MnO_{4}^{-} + 5 (COOH)_{2} + 6 H^{+} \rightarrow 2 Mn^{2+} + 10 CO_{2} + 8 H_{2}O$ $v = k [MnO_{4}^{-}] [(COOH)_{2}]$

- Conclusion:
 Stoichiometric reactions do not allow inference of chemical kinetics!
- \rightarrow Theory of consecutive reactions

Experimental Methods of Chemical Kinetics

- Reaction under same conditions in different vessels in parallel
- Extraction of small samples during the reaction
- Measurement of physical properties during the reaction:
 - Colour, absorption
 - Index of refraction, optical rotation, polarization
 - Volume, pressure, temperature

Order of Reaction

- Experiment yields values of concentration for different times
- Rate of reaction is a function of concentrations:

$$\frac{dc_1}{dt} = f(c_1, c_2, \dots, c_n)$$

Rate of reaction depends on the product of concentrations:

$$\frac{dc_a}{dt} = -k c_A^a c_B^b \dots c_N^n$$

• Order of reaction is the sum of the exponents, so $a+b+\dots+n$

• Decomposition of nitric pentoxide:

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

$$\frac{d[N_2O_5]}{dt} = -k_1[N_2O_5]$$

 \Rightarrow 1st order reaction

• Decomposition of nitrogen dioxide:

$$2NO_2 \rightarrow 2NO + O_2$$

$$\frac{d[NO_2]}{dt} = -k_2[NO_2]^2$$

 \Rightarrow 2nd order reaction

$$(C_{2}H_{5})_{3}N + C_{2}H_{5}Br \rightarrow (C_{2}H_{5})_{4}N^{+}Br^{-}$$
$$\frac{d[C_{2}H_{5}Br]}{dt} = -k_{2}[C_{2}H_{5}Br][(C_{2}H_{5})_{3}N]$$

 \Rightarrow 2nd order reaction

• Decomposition of acetaldehyde:

$$CH_3 CHO \rightarrow CH_4 + CO$$

$$\frac{d[CH_3CHO]}{dt} = -k_{1,5}[CH_3CHO]^{3/2}$$

 \Rightarrow 1.5th *order reaction*

Conclusion

• There is <u>no</u> relation between the form of the stoichiometric equation and the reaction order of a chemical reaction.

Reaction Molecularity

- Neither stoichiometric equation nor the reaction rate can provide reliable information about the real chemism of a reaction.
- Often reactions have many intermediary steps
- Single steps of a complex reaction are called <u>elementary reaction</u>

Reaction Molecularity (2)

- unimolecular: spontaneous decomposition of a molecule
- bimolecular: collision of two molecules
- Reaction molecularity only meaningful for elementary reactions

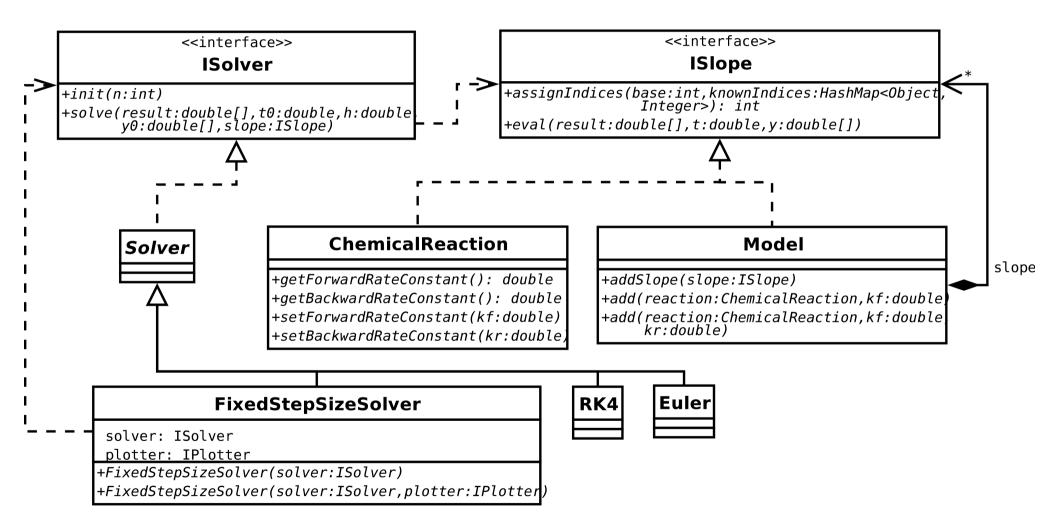
Example of a bimolecular reaction

 $NO + O_3 \rightarrow NO_2 + O_2$

$$\frac{d[NO]}{dt} = -k_2[NO][O_3]$$

Reaction Mechanism

- Chain of consecutive <u>elementary</u> reactions
- Example: $2O_3 \rightarrow 3O_2$
- If this would be an elementary reaction, then it must hold: $\frac{d[O_3]}{dt} = -k_2[O_2]^2$
- The experiment shows: d


$$\frac{d[O_3]}{dt} = -k \frac{[O_3]^2}{[O_2]}$$

• Explanation: $O_3 \Leftrightarrow O_2 + O_1(fast)$ $O_3 \Leftrightarrow O_2 + O_1(fast)$ $O_3 \Rightarrow 2O_2$ $\frac{d[O_3]}{dt} = -k_2'[O][O_3] = -k_2'K\frac{[O_3]^2}{[O_2]}$

Simulation of Chemical Systems

- Results are the concentrations of substrates as a function of time
- Performed by numerical integration
- Chemical equations must be translated into differential equations
- Automatic translation does only work for elementary reactions

Simulation Framework

Simple Example

- Three substrates: A, B, C
- Two reactions:

 $A \Rightarrow B$ $B \Rightarrow C$

• Differential equations:

$$\frac{d[A]}{dt} = -k_1[A]$$
$$\frac{d[B]}{dt} = +k_1[A] - k_2[B]$$
$$\frac{d[C]}{dt} = +k_2[B]$$

Same Example in XL

```
import static de.grogra.cells.ChemicalOperators.*;
import static de.grogra.cells.Molecule.*;
import de.grogra.cells.*;
import de.grogra.cells.solver.*;
import java.util.*;
```

```
// define new species X1, X2 and X3
const Molecule X1 = new Molecule("X1");
const Molecule X2 = new Molecule("X2");
const Molecule X3 = new Molecule("X3");
public void run ()
{
    // define a new reaction: X1 -> X2
    // rate coefficient is 2
    ChemicalReaction r1 = X1 <=> X2;
    r1.setForwardRateConstant(2);
```

. . .

Same Example in XL (2)

// instantiate a new simulation model
de.grogra.cells.Model model =
 new de.grogra.cells.Model();

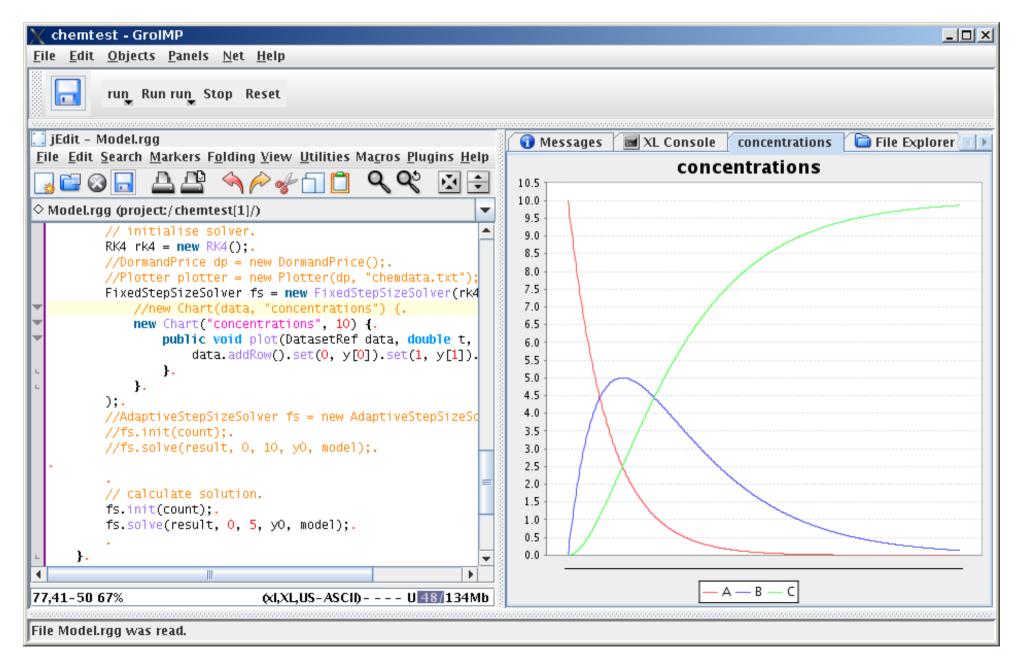
. . .

. . .

// add the chemical reaction to the model
model.addSlope(r1);

// add another chemical reaction to the model
model.add(X2 <=> X3, 1);

```
// assign integers [0, count) to species
HashMap m = new HashMap();
int count = model.assignIndices(0, m);
```


```
// allocate memory for numerical simulation
double[] result = new double[count];
double[] y0 = new double[count];
```

Same Example in XL (3)

```
. . .
   // set initial conditions
   setValue(m, y0, X1, 10);
   // initialise solver
   RK4 rk4 = new RK4();
   FixedStepSizeSolver fs = new FixedStepSizeSolver(
      rk4, new Chart("concentrations", 10) {
          public void plot(DatasetRef data,
             double t, double[] y)
          {
             data.addRow().set(0, y[0])
                 .set(1, y[1]).set(2, y[2]);
          }
      }
   );
   // calculate solution
   fs.init(count);
   fs.solve(result, 0, 5, y0, model);
```

}

Screenshot

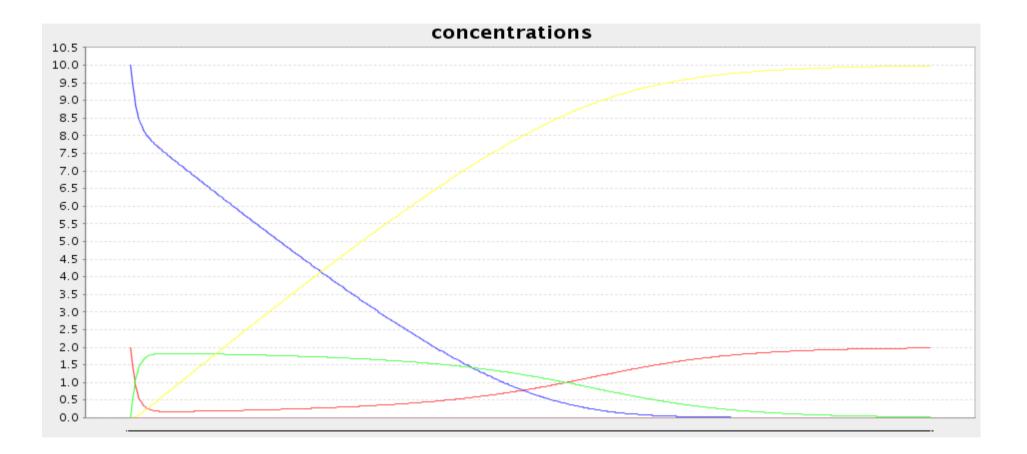
Second Example

• Irreversible Michaelis Menten:

 $E + S \Leftrightarrow ES \to E + P$

• Differential equations:

$$\begin{aligned} \frac{d[S]}{dt} &= -k_1[E][S] + k_{-1}[ES] \\ \frac{d[E]}{dt} &= -k_1[E][S] + k_{-1}[ES] + k_2[ES] \\ \frac{d[ES]}{dt} &= +k_1[E][S] - k_{-1}[ES] - k_2[ES] \\ \frac{d[P]}{dt} &= +k_2[ES] \end{aligned}$$


Second Example in XL

```
const Molecule E = new Molecule("E");
const Molecule S = new Molecule("S");
const Molecule ES = new Molecule("ES");
const Molecule P = new Molecule("P");
```

```
// define michaelis menten kinetics
de.grogra.cells.Model model =
    new de.grogra.cells.Model();
model.add(E + S <=> ES, 3, 0.1);
model.add(ES <=> E + P, 2);
// set initial conditions
setValue(m, y0, E, 2);
setValue(m, y0, S, 10);
...
// calculate solution
fs.init(count);
fs.solve(result, 0, 5, y0, model);
```

}

Second Example after Simulation

Problems

- Law of mass action only valid for <u>elementary reactions</u>
- But observable reactions mostly are not elementary and intermediate steps are unknown
- Not valid under dimensionally-restricted conditions → <u>fractal kinetics</u>
- But reactions in plant-cells are dimensionallyrestricted