
Using the Language XL for Structural Analysis
Jan-Anton Dérer1 Ole Kniemeyer1 Reinhard Hemmerling1 Gerhard Buck-Sorlin2 Winfried Kurth1

1BTU Cottbus, Department of Computer Science, Chair for Practical Computer Science / Graphics Systems,
P.O.Box 10 13 44, 03013 Cottbus, Germany

2Wageningen UR, Crop and Weed Ecology Group, Haarweg 333, 6709 RZ Wageningen, The Netherlands

Introduction
The analysis of plant structures is an important issue in functional-structural plant
modelling, especially in the context of parameterization and validation. This
holds equally for structures resulting from measurements of real plants and for
modelled structures, i.e., the outcome of virtual plant simulations. Such analysis
has to consider both the topology of the structure and the values of parameters of
its constitutive entities like geometry-related parameters or the internal state.

This poster presents a beech model case study which uses the programming
language XL within the open-source modelling environment GroIMP [1] for
analysis purposes. Although XL has been designed as an extension of L-systems,
i.e., for the implementation of functional-structural plant models, it turns out to
be equally suitable for the analysis of plant structures. The advantage of this ap-
proach is that the same language can be used to model a virtual plant, to analyse
the results, and to compare it with measured data.

Analysis With XL
The language XL provides graph query facilities which search for occurrences of
patterns in the current structure that is represented as a graph. For example, the
simple query
(* Shoot *)

finds all nodes of type Shoot in the current structure, and the expression
(* x:Shoot, (x.order == 0) *).length

combines the previous query with the condition (x.order == 0) so that it
finds all shoots of order zero and then returns their length. The expression
((* p:Shoot [b:Shoot] *), b.length/p.length)

makes use of the traditional L-system notation which uses square brackets to
enclose branches: it finds all pairs of parent shoots p and directly following
branching shoots b and computes the ratio of their lengths.

The results of such expressions can be analysed with the library provided by
GroIMP. Standard computations like sum, mean, max exist, but also facilities
to draw a plot, to fit parameters of a function to given data, or to perform simple
statistical analysis.

DTD Format
Measured tree data can be imported into GroIMP by means of the DTD format
[3]. Each line describes a single growth unit. After the import, such a unit is
represented within GroIMP as a node of class DTDShoot. The shoot parameters
are node attributes, and the topology is represented by a tree graph.

Figure 1: DTD beech trees within GroIMP

1 L185 ## E9 Y3 Z2 + w90 D9.2
2 L141 #1 V E9 Y3 Z1 D8.2
3 L96 #2 V E7 Y3 Z1 D7.5
4 L128 #3 V E4 Y1 D6.8
5 L221 #4 V E8 Y2 Z1 D5.9
6 L197 #5 V E8 Y2 D3.2
7 L233 #6 V E8 B8 D2.2
8 Q3 #1 I3 - W80
9 L27 #8.3 V E2 D1.1
10 Q2 #9 I1 - b3 W80
11 L19 #1 I2 + E2 D2.0
12 L82 #11 V E6 Y2 Z2 D1.8
...

Measurements
For this case study, we use data of young beech trees (Fagus sylvatica L.) which
were measured in 1995 in the Solling (German midland mountains) [4]. Their
age ranges from 7 to 14 years. The complete topology was recorded with annual
shoots being the elementary units, and for each shoot its length, number of in-
ternodes, branching angle and some further parameters were measured. Figure 1
shows a visualization of the measured data of four beech trees within GroIMP.

Figure 2: Result of analysis within GroIMP Figure 3: Distribution of shoot lengths

Analysed Properties
For this case study, we extract two simple properties out of the data. At first,
the relation between the length of a shoot and the number of its internodes is
studied. For each shoot a which is not a short shoot (longer than 8 mm), the pair
(a.length, a.internodeCount) is written to a table, where we use
different rows of the table for different orders:
((* a:DTDShoot, (a.length > 0.008) *),
table.getRow(a.order).add(a.length,a.internodeCount));

This table can be exported to various formats like CSV or XLS if one wants to
use external tools to further analyse the data. But it can also be plotted within
GroIMP by
chart(table, SCATTER_PLOT);

The result for five beech trees is shown in Fig. 2. A linear relation n(l) = p0l+p1
between length l and number n seems to be suitable. The library of GroIMP can
be used to compute the optimal values for p0,p1 (namely 0.287cm−1 and 2.28,
respectively) and plot the resulting function, which is also shown in Fig. 2:
double[] p = {25, 2};
DoubleToDouble n = double x => double p[0]*x + p[1];
fitParameters(n, table, p, precision);
plot(n, 0.01 * (1:25));

As a second property, we consider the branching angle. The expression
((* p:DTDShoot [b:DTDShoot], (p.order == 0) *),

angle(direction(p), direction(b)))

computes the branching angle between all parent shoots p of order zero and
their branching shoots b. If we apply the built-in statistics function to this
expression, we obtain a statistics of the branching angles including mean value
and deviation: 64◦ ± 15◦ for order zero, 50◦ ± 11◦ for higher orders.

Beech Model

Figure 4: Beech individuals
with different light
conditions after ten years

Figure 5: Distribution of
shoot lengths of simulated
tree

We developed a beech FSPM based on carbon pro-
duction, transport and distribution which contains the
results of the previously described analysis of experi-
mental data [2]. Figure 4 shows the 3D visualization of
three individuals at the age of ten years. The model is
a true FSPM, but we had not enough experimental data
to fully parametrize it on the basis of such data.

The outcome of the model can be analysed with XL
expressions just like measured data. For example,
we may study the distribution of annual shoot lengths
(which is an emergent property of the FSPM) and com-
pare it with measured data:
table << (* Shoot *).length;
chart(table, HISTOGRAM | Y_LOG);

The result in Fig. 5 differs in shape from the corre-
sponding diagram for measurements in Fig. 3. This
could be the starting point for refinements of the model.

Conclusions
We have shown a case study which uses the language XL to analyse experimental
data, to implement a beech FSPM and to analyse the outcome of the latter. The
presented work has to be understood as a “proof of concept”: although the model
itself is not meant to be realistic in the sense that it could be used to precisely
predict beech growth, this case study has shown that the language XL, combined
with the environment GroIMP, is in principle suitable for such a purpose.
[1] O. Kniemeyer.

Design and Implementation of a Graph Grammar Based Language for Functional-Structural Plant Modelling.
PhD thesis, BTU Cottbus, 2007.
(forthcoming, see http://www.grogra.de).

[2] O. Kniemeyer, R. Hemmerling, G. Buck-Sorlin, and W. Kurth.
The rule-based language XL and the modelling environment GroIMP, illustrated with simulated tree competition.
In Proceedings of FSPM07, 2007.

[3] W. Kurth and G. Anzola Jürgenson.
Triebwachstum und Verzweigung junger Fichten in Abhängigkeit von den beiden Einflußgrößen Beschattung und Wuchsdichte:
Datenaufbereitung und -analyse mit GROGRA.
In D. Pelz, editor, Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik, 10. Tagung
Freiburg i. Br. 1997, pages 89–108. Ljubljana, Biotechnische Fakultät, 1997.

[4] M. Steilmann.
Morphologische Untersuchungen zur Modellierung des Wachstums in Abhängigkeit von den Licht- und Konkurrenzverhältnissen von
Jungbuchen.
Diploma thesis, University of Göttingen, 1996.

www.grogra.de FSPM 07, Napier, New Zealand


