Simultaner Abgleich verschiedener Sichten, Integrations- und Rekonstruktionsmethoden

Andreas Köstner

29.06.2004

Seminar: Mustererkennung in Bildern und 3-D-Daten

Gliederung

- 1. Simultaner Abgleich verschiedener Sichten
- 2. Sichtenintegration und Oberflächenrekonstruktion
 - Definitionen
 - Volumetrische Integrationsmethoden
 - Volumetrische Rekonstruktionsmethoden
 - Geometrische Integrationsmethoden
 - Geometrische Rekonstruktionsmethoden
- 3. Zusammenfassung
- 4. Quellenverzeichnis

Simultaner Abgleich verschiedener Sichten

- in der Praxis meist notwendig: Überführung mehrerer Sichten in ein einziges Koordinatensystem
- Einfache Ansätze:
 - Abgleich eines zylindrischen Scans mit konventionellen Tiefenscans
 - Rigid Body Modelling
 - Multiple View Chen and Medioni

Abgleich eines zylindrischen Scans mit konventionellen Tiefenscans

- Zylindrischer Scan eines Objekts auf einem Drehteller
- danach Aufnahme von N Tiefenbildern (range images) in verschiedenen Drehpositionen
- Matching der Tiefenbilder mit dem zylindrischen Scan
- Nachteil:
 - sehr einschränkendes Verfahren (nicht jedes Objekt kann auf einem Drehteller platziert werden)

Beispiel eines zylindrischen Scans

Rigid Body Modelling (rigid = starr)

- Stoddart & Hilton
- Technik zur Integration verschiedener Punktwolken
- jede Punktmenge wird als fester Körper angesehen
- Übereinstimmungen werden durch elastische Verbindungen modelliert
- physikalisches System -> Ziel: Erreichen eines Gleichgewichts (lokales Minimum der registration energy function)
- Verwendung klassischer physikalischer Bewegungsgleichungen (Einbeziehung von Kraft und Drehmoment) -> Differentialgleichungen
- Nachteile:
 - Kenntnis von korrespondierenden Punkten wird vorausgesetzt

Rigid Body Modelling (2)

Multiple View Chen and Medioni

- Anzahl von Oberflächen wird als Netzwerk repräsentiert
- ein Knoten für jede Sicht, eine Kante für die jeweilige Transformation zwischen zwei Sichten
- Ziel: wohlbalanciertes Netzwerk
- Bedingungen:
 - 1. Fehler sind über das Netzwerk gleichverteilt
 - 2. Transformationsmatrix zwischen zwei Sichten ist eindeutig und unabhängig vom Pfad zwischen den zwei Sichten
- Festlegung einer zentralen Sicht, von der aus eine Stern-Topologie aufgebaut wird
- Vorteil: grafentheoretische Techniken können angewandt werden

Multiple View Chen and Medioni (2)

Transformationen zwischen zwei Sichten / Knoten V_i, V_j können nun einfach über

 $\mathbf{M}_{ij} = \mathbf{M}_j^{-1}\mathbf{M}_i$

berechnet werden

Multiple View Chen and Medioni (3)

Algorithmus:

- 1. Für jede Sicht V_i, $V_i \neq V_c$
 - a) Für jede Sicht $V_{j,} V_j \neq V_i$
 - i. Transformiere V_i zu V_i':

$$V_i' = M_{j,k-1}^{-1} \circ M_{i,k-1} * V_i$$

- ii. Finde Tangentialebenen in V_i, die mit Punkten in V_i⁺ korrespondieren
- b) Berechne die inkrementelle Transformationsmatrix ΔT , die den Abstand zwischen den Punkten in V_i und deren korrespondierenden Tangentialebenen in allen anderen Sichten minimiert
- c) Aktualisiere $M_{i,k}$: $M_{i,k} = \Delta T \circ M_{i,k-1}$
- 2. **k=k+1**
- 3. Wiederhole solange, bis die inkrementellen Transformationen für alle N Sichten ausreichend klein sind.

Sichtenintegration & Oberflächenrekonstruktion

• Begriffsklärung:

- Sichtenintegration:
 - Zusammenführung verschiedener 3-D-Sichten
- Oberflächenrekonstruktion: Berechnung einer einzelnen
 Oberfläche zur Beschreibung der integrierten Sichten
- existierende Techniken:
 - Volumetrische Methoden
 - Geometrische Methoden

Abgrenzung volumetrischer und geometrischer Methoden

Volumetrische Methoden

- Grundlage ist die Definition einer Distanzfunktion in R³ für jeden Punkt x zur Oberfläche
- Integration bedeutet hier: Zusammenführen der Distanzfunktionen für jedes Teilnetz
- Rekonstruktion: Polygonisierungsprozess

Geometrische Methoden

- basieren größtenteils auf der Delaunay-Triangulation
- verwenden f
 ür Integration und Rekonstruktion die originale Punkt- bzw. Netzgeometrie

Volumetrische Rekonstruktion erzeugt eine Approximation der originalen Oberfläche, während geometrische Techniken eine Interpolation produzieren.

Volumetrische Integrationsmethoden Curless und Levoy

- Curless & Levoy 1996
- Ansatz: diskrete Funktionen d_i(x), die die vorzeichenbehaftete euklidische Distanz eines Punktes x zum nächsten Punkt der Sicht V_i entlang einer Sensor-Sichtlinie darstellen, werden kombiniert (merged, combined)

• Merge-Funktion:
$$D(x) = \frac{\sum w_i(x) d_i(x)}{\sum w_i(x)}$$

- w_i(x) gibt die Vertrauenswürdigkeit (confidence) des Punktes x in der Sicht i an
- die d_i(x) werden mit w_i(x) gewichtet

Volumetrische Integrationsmethoden Curless und Levoy

links:

- Beispiel f
 ür zwei Sichten, die aus derselben Richtung gescannt wurden
- Isofläche ergibt sich aus dem Mittelwert der Nulldurchgänge (falls die Bewertungsfunktionen identisch sind)

rechts:

14/41

- a) Distanzfunktionen d_1 , d_2 Gewichtungsfunktionen w_1 , w_2 wahrscheinliche Oberflächenpunkte r_1 , r_2
- b) Kombination der Funktionen neuer Oberflächenpunkt R

Volumetrische Rekonstruktionsmethoden Hoppe et al.

- Technik zur Berechnung einer Oberfläche aus einer ungeordneten Menge von Oberflächenpunkten
- Berechnung einer Tangentialfläche f
 ür jeden Punkt p_i unter Einbeziehung einer bestimmten Anzahl benachbarter Punkte (Minimierung der Abstandsquadrate)
- Orientierung der Tangentialflächen, so dass alle Normalenvektoren nach außen zeigen (Riemann-Graph, NP-vollständig)
- Ermittlung der ungefähren Ausrichtung der Tangentialflächen
- Aus Tangentialflächenbeschreibung des Objektes und ihrer Korrekturwerte der Orientierung erhält man eine vorzeichenbehaftete Funktion des Abstandes des jeweiligen Punktes von der approximierten Oberfläche
- Modifizierter Marching-Cubes-Algorithmus berechnet aus den Tangentialflächen Tp_i und der Distanzfunktion f(p_i) die endgültige Beschreibung des Objektes

Volumetrische Rekonstruktionsmethoden Hoppe et al.

(a) Original CSG object

(b) Sampled points (x_i) (n = 4102)

(c) EMST of tangent plane centers o,

- (a) Original
- (b) Punktwolke
- (c) EMST (Euclidean Minimum Spanning Tree) der Tangentialebenenzentren
- (d) Riemanngraph über die Zentren den EMST

aus Hoppe, SIGGRAPH 1992

(d) Riemannian Graph over 0,

Volumetrische Rekonstruktionsmethoden Hoppe et al.

(a) Traversal order of orientation propagation

(d) Estimated signed distance (shown as p - z)

(b) Oriented tangent planes (Tp(x,))

(e) Output of modified marching cubes

(c) Cubes visited during contouring

(f) Final surface after edge collapses

aus Hoppe, SIGGRAPH 1992

- (a) Reihenfolge der Orientierungsabschätzung
- (b) Orientierte Tangentialebenen
- (c) bei der Konturierung besuchte Voxel
- (d) geschätzte Distanzen
- (e) Ergebnis des modifizierten Marching-Cubes-Algorithmus
- (f) Endergebnis

- Lorensen & Cline (1987)
- Algorithmus zur Extraktion einer Oberfläche aus volumetrischen Daten

Grundsätzliche Vorgehensweise:

- Ausgangspunkt: Voxel deren Ecken einen bestimmten Wert haben
- liegen eine oder mehrere Ecken unterhalb eines Grenzwert und die anderen darüber, muss das Voxel also ein Stück der gesuchten Oberfläche enthalten
- ausgehend von der Wert-Verteilung der Ecken kann das Voxel durch Dreieckflächen unterteilt werden
- Normalen der Dreiecksflächen bestimmen Innen- bzw. Außenbereich
- Verbinden aller Dreiecksflächen mit denen benachbarter Voxel erstellt die Oberflächenrepräsentation
- Sehr verbreitet bei medizinischen Anwendungen (Computer-Tomografie)

• 2D-Analogie: Marching Squares

- gegeben: Gitter mit gewichteten Eckpunkten
- gesucht: Iso-Linie mit einem bestimmten Wert (hier Schwellwert 5)
- verschiedene Methoden zu Interpolation können verwendet werden
- meist lineare Interpolation
- jedes Quadrat kann 16 Konfigurationen einnehmen (resultierend aus der Schwellwertberechnung)

• 16 mögliche Konfigurationen eines Quadrats

- Konfiguration 5 und 10 sind nicht eindeutig: Es kann nicht festgelegt werden, wo die Isolinien entlang laufen
- im R³
 Würfel hat 8 Ecken bes gibt also 256 mögliche Konfigurationen
- Reduktion der Anzahl durch Rotation und Spiegelung auf 15 Konfigurationsfamilien

Die 15 Konfigurationsfamilien

Volumetrische Rekonstruktionsmethoden Marching Cubes (Beispiel)

11272 Dreiecke

- Hilton et al. 1996
- trianguliert Oberflächen mit unterschiedlichsten Topologien
- Schlüssel des Algorithmus: lokale Bedingung die von jedem Dreieck erfüllt werden muss (3-D-Delaunay-Oberflächenbedingung)
- Die Bedingung:

Ein Dreieck T(xi, xj, x_{new}) kann nur zum Netzrand an der Kante e(x_i,x_j) hinzugefügt werden, wenn kein Teil des vorhandenen Modells M' mit derselben Oberflächenorientierung innerhalb der "Um-Kugel" des Dreiecks mit dem Mittelpunkt c_T liegt.

- Bedingung garantiert, dass jedes Dreieck eindeutig die Oberfläche definiert
- Selbstschnitte der Oberfläche werden verhindert
- wenn die Bedingung lokal erfüllt wird, wird sie auch global erfüllt

Algorithmus:

- Projektion eines Punktes x_{proj} senkrecht zur Mitte der Kante (x_i, x_j) in der Ebene des Dreiecks T(x_i, x_j, x_k) mit der Distanz I_{proj}
- 2. Finde einen Punkt x_{new} auf der impliziten Oberfläche der x_{proj} am nächsten liegt
- 3. Beende die Suche an dieser Kante, wenn
 - a) der nächste Punkt liegt auf dem Rand
 - b) die Orientierung bei x_{new} ist genau entgegengesetzt zu der des Dreiecks T(xi, xj, x_{new})
- 4. Teste x_{new} auf Erfüllung der Delaunay-Bedingung
- 5. Wird die Bedingung erfüllt, dann
 - a) füge x_{new} zu Modell M hinzu
 - b) füge T_{new} zu M hinzu
 - c) füge die Kanten $e(x_i, x_{new})$ und $e(x_j, x_{new})$ zu M hinzu
- 6. Wenn nicht, wiederhole die Schritte 4 und 5 für die anliegenden Punkte x_{next} bzw. x_{prev}
- 7. Wiederhole solange bis keine neuen Dreiecke mehr zu M hinzugefügt werden

Geometrische Integrationsmethoden

- Operationen werden auf den Originalpunkten und Triangulierungen ausgeführt (im Gegensatz zu volumetrischen Repräsentationen)
- Geometrische Methoden folgen fast alle demselben Ansatz:
 - Finden von Überlappungen
 - Zusammenführen der überlappenden Regionen (Merging)

Geometrische Integrationsmethoden Kanonische Venn-Diagramme

• Soucy & Laurendau 1995

Ansatz:

- 1. Auffinden von überlappenden Oberflächenteilen
- 2. Darstellung der Überlappungen in einem Venn-Diagramm
- 3. Hierarchische Integration und Retriangulation
- Bedingungen, dass ein Punkt in Sicht V_i gleich einem in Sicht V_i ist:
- 1. Der Punkt muss in der Nähe von V_i liegen
- 2. Oberflächenorientierung des Punktes in V_i muss so sein, dass der Punkt in V_i sichtbar ist
- Test der Bedingungen mit Spatial Neighbourhood Test (SNT, räumlicher Nachbarschaftstest) und Surface Visibility Test (SVT, Oberflächen-Sichtbarkeitstest)

Geometrische Integrationsmethoden Kanonische Venn-Diagramme

- alle Punkte werden auf die zwei Bedingungen getestet und markiert
- Region-Growing-Algorithmus bestimmt überlappende Regionen

Geometrische Integrationsmethoden Kanonische Venn-Diagramme

- Regionen werden absteigend nach Anzahl der überlappenden Sichten kombiniert (merged)
- Berechnung einer Fläche mit Normalenvektor aus dem Durchschnitt der Normalenvektoren der überlappenden Sichten (Normalenvektor einer Sicht: optische Achse der Scan-Geometrie)
- Projektion der Punkte der überlappenden Regionen auf diese Fläche
- Kombination der Regionen durch gewichtete Mittelung (Gewichtungskoeffizienten ergeben sich wieder aus der Zuverlässigkeit der einzelnen Punkte (uncertainty: Ungewissheit))
- Retriangulierung der Punkte auf der Fläche
- Rückführung in die globale Modell-Repräsentation
- erneute Retriangulierung zum Verbinden der kombinierten Regionen und der nicht-überlappenden Sichten

Geometrische Integrationsmethoden Mesh Zippering

- Allgemeiner Ablauf:
 - Entfernen überlappender Netzstücke
 - Verbinden der Netze (Clipping)
 - Entfernen kleiner Dreiecke, die durch das Clipping entstanden sind
- Clipping beinhaltet das Schneiden von Randbereichen und Löschen überstehender Teilstücke (sauberer Übergang)
- Sehr dünne Dreiecke werden mit ihren Nachbarn verschmolzen
- kleine Löcher können entstehen, die in einem post-processing-Schritt ausgebessert werden müssen

Geometrische Integrationsmethoden Mesh Zippering (Beispiel)

Geometrische Integrationsmethoden Mesh Zippering

Geometrische Integrationsmethoden Mesh Zippering (Beispiel)

Quelle: www.cs.unc.edu/~sud/courses/comp258/lecture.ppt

Links (oben und unten): Netze aus zwei Teilbildern eines Telefonhörers. Rot bedeutet hohe, Blau niedrige Sicherheit/Genauigkeit der Daten. Mitte oben: Beide Netze (rot bzw. weiß) nach der Ausrichtung. Mitte unten: Nahaufnahme einer Kante, Ungenauigkeiten an den Rändern sind sichtbar (überstehende Dreiecke). Oben rechts: Die Netze nach der Entfernung redundanter Teile (redundant surface removal). Unten rechts: Die Netze nach dem Mesh Zippering

Geometrische Rekonstruktionsmethoden Delaunay-Triangulation und Voronoi-Diagramme

- geometrische Rekonstruktionsmethoden basieren meistens auf der Delaunay-Triangulation
- Ausgangspunkt ist eine ungeordnete Punktmenge im 2D oder 3D
- Wie trianguliert man solche eine Punktmenge?

Geometrische Rekonstruktionsmethoden Voronoi-Diagramme

 Definition eines Voronoi-Diagramms f
ür den Υⁿ: F
ür jeden Punkt p aus S gilt:

$$vo(p) = \left\{ x \in \mathbb{R}^n \mid dist(x,p) \le dist(x,q) \forall q \in S - p \right\}$$

vo(p) ... Voronoi-Region des Punktes p
 S ... Punktmenge im Rⁿ mit m unterschiedlichen Punkten
 x ... Punkte im Rⁿ, die einer bestimmte Voronoi-Region zugeordnet werden sollen
 dist(x,y) ... Abstandsfunktion, meist Euklidische Distanz

Zur Region eines Punktes p gehören also alle Punkte des Rⁿ, deren Abstand zu p kleiner oder gleich deren Abstand zu allen anderen Punkten der Menge ist.

Geometrische Rekonstruktionsmethoden Delaunay-Triangulation

- Delaunay-Triangulation und Voronoi-Diagramme stehen in direkter Beziehung zueinander
- Punkte die eine gemeinsame Kante im Voronoi-Diagramm haben, werden verbunden
- im R² entstehen so Dreiecke als Grundform
- Konzept lässt sich auf höhere Dimensionen erweitern
- im R³ ist der Tetraeder die Grundfigur

Geometrische Rekonstruktionsmethoden Delaunay-Triangulation und Voronoi-Diagramme (Beispiel)

Geometrische Rekonstruktionsmethoden Delaunay-Triangulation zur Oberflächenrekonstruktion

- 2D-Ansatz zur Oberflächenrekonstruktion
- Ausgangspunkt: Punktwolke im R³
- Ziel: Gewinnung einer triangulierten Oberfläche
- Projektion der äußeren Punkte auf eine Fläche
- Triangulierung
- Rücktransformation zu 3D

Zusammenfassung

- viele mögliche Verfahren mit unterschiedlichen Ansätzen
- große Unterschiede in Rechenaufwand und Genauigkeit
- Auswahl eines Verfahrens je nach Anwendung
- Im Vortrag behandelte Verfahren:
 - Abgleich von Sichten:
 - Abgleich eines zylindrischen Scans mit mehreren Tiefenscans
 - Rigid Body Modelling
 - Multiple View Chen & Medioni
 - Volumetrische Integrationsmethoden:
 - Curless & Levoy
 - Volumetrische Rekonstruktionsmethoden:
 - Hoppe et al.
 - Marching Cubes
 - Marching Triangles
 - Geometrische Integrationsmethoden:
 - Kanonische Venn-Diagramme
 - Mesh Zippering
 - Geometrische Rekonstruktionsmethoden:
 - Delaunay-Triangulation und Voronoi-Diagramme

Quellenverzeichnis

- http://exaflop.org/docs/marchcubes/ind.html
- http://graphics.stanford.edu/papers/volrange/
- http://www.gup.uni-linz.ac.at/skcg/Vis2003-3.pdf
- http://www1.cs.columbia.edu/~allen/F02/turk.notes.pdf
- http://www.siggraph.org/publications/newsletter/v33n4/contributions/terzopoulos.html
- A.J. Stoddart, A. Hilton: Registration of multiple point sets (1996)
- <u>http://www.diku.dk/hjemmesider/studerende/duff/Fortune/</u>(Voronoi/Delaunay-Applet)
- <u>http://wwwpi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.en</u> (interaktives Voronoi/Delaunay-Applet)
- http://www-sop.inria.fr/geometrica/team/JeanDaniel.Boissonnat/coursMaillages.html
- http://www.essi.fr/~lingrand/MarchingCubes/algo.html
- http://www.ee.surrey.ac.uk/Research/VSSP/3DVision/mt.html