<u>Seminar: Mustererkennung in Bildern und 3-D Daten</u> <u>Mathias Haberjahn</u>

Theorie und Aufbau selbstkalibrierender Ganzkörper-3-D-Messsysteme mittels strukturiertem Licht

Gliederung

- 1. Einführung
- 2. Mathematische Grundlagen
 - Kamera in der Photogrammetrie
 - 3-D Messwertbestimmung mittels strukturiertem Licht
- 3. Konzept der Selbstkalibrierung
 - Kamera, Projektor mit Gitterrotation
 - Kamera, 2 Projektoren mit Gitterrotation

- 4. Mess(un)genauigkeiten
 - Genauigkeit der Phasenbestimmung
 - Bildpunktbestimmungsgenauigkeit
- 5. Messresultate
- 6. Zusammenfassung

Ziel aller 3-D Messmethoden:

- Bestimmung von kartesischen Koordinaten
- Alle Standards messen diese indirekt

Gemessene Werte:

- Phasenwerte der projizierten Muster
- Bild Pixelkoordinaten der Kamera

System Parameter:

- geometrische Bedingungen der Messsensoren
- vor der Messung bestimmt

Nachteile:

- perfekte Standards für präzise Messbewegungen
- unpraktikabel für Objekte > 30 cm
- zeitstabil
- Kalibrierung sehr zeitintensiv und aufwendig

Photogrammetrie:

- bietet Lösungsmöglichkeiten
- ist begrenzt wegen
 - zeitaufwendige Berechnungen
 - Anzahl der gemessenen Punkte < 10.000
 - Anbringung von Markierungen auf Messobjekt
- mindestens zwei Messpositionen → 4 Messwerte
- Zur Bestimmung des Maßstabs nur ein Abstandswert erforderlich

Vorteile Streifenprojektionstechnik:

- keine teuren Standards erforderlich
- Zeitstabilität muss nur für die Messzeit gewährleistet sein

- Vereinigung von Photogrammetrie und Streifenprojektionstechnik
 - 1. Kombination garantiert hohe Anzahl an Objektpunkten und schnelle Datengewinnung
 - 2. gleichzeitige Bestimmung von Koordinaten und
 Systemparametern führt zu hoher Unabhängigkeit gegen
 Umwelteinflüsse

3. Kein Gebrauch von Marken und "Point Matching" der

Einzelbilder, da alle Messpunkte im gleichen Koordinatensystem

2.1 Mathematische Grundlagen der Photogrammetrie

Grundlage: - zentrierte Projektion

- Objekt-Punkt *M*, Kamera-Zentrum *O*^(c), Bildpunkt liegen auf einer Linie

Nach dem Prinzip der Kollinearität:

Beziehung zwischen Koordinaten und unbekannten Parametern

$$\begin{bmatrix} \xi_M^{(C)} \\ \eta_M^{(C)} \end{bmatrix} = -\frac{c}{z'} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \xi_H \\ \eta_H \end{pmatrix}$$

...
$$\xi^{(c)}_{M}$$
, $\eta^{(c)}_{M}$: Bildkoordinaten

... x', y', z'

: Hilfs-Koordinatensystem (x', y'-Ebene parallel zur Bildebene)

... C

- : Kamera-Konstante (kürzeste Entfernung zwischen Bildebene und Projektionszentrum)
- ... $\xi_{\rm H}$, $\eta_{\rm H}$: Bildpunkte des Objektpunktes

- Abweichungen (d ξ , d η) von der zentrierten Projektion, durch Funktionen beschrieben

z.B.: Korrektur der Radial-Verzerrung

$$d\xi = (\xi - \xi_{\rm H})(k_1r^2 + k_2r^4 + k_3r^6 + ...), d\eta = (\eta - \eta_{\rm H})(k_1r^2 + k_2r^4 + k_3r^6 + ...)$$

mit r =
$$[(\xi - \xi_{\rm H})^2 + (\eta - \eta_{\rm H})^2]^{1/2}$$

$$\begin{bmatrix} \xi_M^{(C)} \\ \eta_M^{(C)} \end{bmatrix} = -\frac{c}{z'} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \xi_H \\ \eta_H \end{pmatrix} + \begin{pmatrix} d\xi \\ d\eta \end{pmatrix}$$

Wechsel vom Hilfs-Koordinatensystem zum Welt-Koordinatensystem

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = R(\boldsymbol{\omega}, \boldsymbol{\phi}, \boldsymbol{\kappa}) \begin{bmatrix} x_M - x_0^{(C)} \\ y_M - y_0^{(C)} \\ z_M - z_0^{(C)} \end{bmatrix}$$

- ... X_M, y_M, Z_M ... $X^{(C)}_0, y^{(C)}_0, Z^{(C)}_0$... $R(\omega, \kappa, \phi)$
- : Welt-Koordinaten des Objektes
- : Welt-Koordinaten des Projektionszentrums
- : orthonormale Rotationsmatrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} \cos\phi\cos & -\cos\sin & \sin\phi \\ \cos\phi\sin + \sin\sin\cos & \cos\phi\cos & -\sin\sin\sin & \sin\phi \\ \sin\phi\sin - \cos\sin\cos & \sin\phi\cos & -\sin\phi\sin & \cos\phi \\ \sin\phi\sin & -\cos\phi\sin & \cos\phi\cos & -\sin\phi\sin \\ \sin\phi\sin & \cos\phi\cos & -\sin\phi\sin & \cos\phi\cos \\ \sin\phi\sin & \cos\phi\cos & -\cos\phi\sin & \sin\phi\cos \\ \sin\phi\sin & \cos\phi\cos & -\cos\phi\sin & \sin\phi\cos \\ \sin\phi\sin & -\cos\phi\cos & -\sin\phi\sin & \cos\phi\cos \\ \sin\phi\sin & -\sin\phi\cos & -\sin\phi\sin & \cos\phi\cos \\ \sin\phi\sin & -\cos\phi\cos & -\sin\phi\sin & -\sin\phi\cos \\ \sin\phi\sin & -\cos\phi\cos & -\sin\phi\sin & -\sin\phi\cos \\ \sin\phi\sin & -\cos\phi\cos & -\sin\phi\sin & -\sin\phi\cos \\ \sin\phi\sin & -\sin\phi\cos & -\sin\phi\sin & -\sin\phi\cos \\ \sin\phi\sin & -\sin\phi\cos & -\sin\phi\sin & -\sin\phi\sin \\ \sin\phi\sin & -\cos\phi\cos \\ \sin\phi\sin & -\cos\phi\cos & -\sin\phi\sin & -\sin\phi\sin \\ -\sin\phi\sin & -\cos\phi\cos \\ \sin\phi\sin & -\cos\phi\cos \\ \sin\phi\sin & -\cos\phi\sin & -\cos\phi\sin \\ \sin\phi\sin & -\cos\phi\cos \\ \sin\phi\sin & -\cos\phi\sin \\ \sin\phi\sin \ \a\phia \ \a\phia \ \babaa \ \abaa \ \babaa \ \babaa \ \babaa \$$

 $\dots \omega, \kappa, \phi$: Winkel der Euler-Konvention

→ Beziehung zwischen Bild ($\xi^{(c)}_{M}$, $\eta^{(c)}_{M}$)- und Weltkoordinaten (x_{M} , y_{M} , z_{M})

$$\begin{split} \left[\xi_{M}^{(C)} - \xi_{H} \right] &- \left(1 + k_{1}r^{2} + k_{2}r^{4} + k_{3}r^{6} \right) \\ \xi_{M}^{(C)} &= -c \frac{r_{11}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{21}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{31}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]}{r_{13}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{23}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{33}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]} \\ \left[\eta_{M}^{(C)} - \eta_{H} \right] - \left(1 + k_{1}r^{2} + k_{2}r^{4} + k_{3}r^{6} \right) \\ &= \eta_{M}^{(C)} = -c \frac{r_{12}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{23}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{32}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]}{r_{13}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{23}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{33}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]} \end{split}$$

- → Schlussfolgerung: eine Kamera-Position liefert 2 Bildpunkte
- → ein Punkt zu wenig für 3-D-Bestimmung
- → zusätzliche 2. Kamera-Position liefert 4 Bildpunkte

Mittels dieser Messwerte ist es nun möglich:

- Bestimmung der Objekt-Koordinaten (x_M, y_M, z_M),
- der Parameter der inneren Kameraorientierung (c, ξ_{H} , η_{H}),
- der Parameter der Verzerrungsfunktionen ($d\xi$, $d\eta$),
- Parameter der äußeren Bildorientierung $(x_0, y_0, z_0, \omega, \kappa, \phi)$

 Nachteil: - zeitaufwendige Suche nach Übereinstimmungspunkten zwischen den Einzelbildern

- Selten natürliche Markierungen

→ künstliche Markierungen am Objekt anbringen

 Anzahl der messbaren Punkte ist geringer als die Pixelanzahl der Kamera

2.2 Optische 3-D-Messung mittels strukturiertem Licht (eine Kamera, ein Projektor)

Streifenprojektionstechnik: - Messsysteme, die simultan Koordinaten und Orientierungsparameter messen (Selbstkalibrierung)

- Streifenprojektor projiziert Gitter mit Gitterabstand Λ auf Objekt
- CCD-Kamera erfasst Schnittpunkte des projizierten Gitters mit Objekt
- Schnittpunkte entsprechen einem Phasenwert
- → Zu jedem Objektpunkt ein Phasenwert zuweisbar ($\Phi^{(P)}_{M}$)
- Phasendifferenz mit entsprechendem Referenzwert ($\Phi^{(P)}_{R}$) in der projizierten Gitterebene ergibt:

$$\xi^{(P)}{}_{M} = \left[\Phi^{(P)}{}_{M} - \Phi^{(P)}{}_{R}\right] \Lambda / (2\pi)$$

- $\xi^{(P)}_{M}$ entspricht Bildpunktskoordinate

Beziehung zwischen Messwerten und 3-D-Koordinaten

Anwendung des Konzepts der zentralen Projektion auf Projektor

$$\xi_{M}^{(P)} = \xi_{H}^{(P)} - c^{(P)} \frac{r_{11}^{(P)} \left[x_{M} - x_{0}^{(P)} \right] + r_{21}^{(P)} \left[y_{M} - y_{0}^{(P)} \right] + r_{31}^{(P)} \left[z_{M} - z_{0}^{(P)} \right]}{r_{13}^{(P)} \left[x_{M} - x_{0}^{(P)} \right] + r_{23}^{(P)} \left[y_{M} - y_{0}^{(P)} \right] + r_{33}^{(P)} \left[z_{M} - z_{0}^{(P)} \right]} + d\xi_{M}^{(P)}$$

Analog zur Kamera:

$$\xi_{M}^{(P)} = \frac{(\phi_{M}^{(P)} - \phi_{R}^{(P)})}{2\pi} \Lambda$$

Projektor liefert nur einen Koordinatenwert

Ein Parameterwert bleibt unbestimmt
 Notwendig, dass die Phasenwertbestimmung (Φ^(P)_M - Φ^(P)_R)
 Mehrfache von 2π enthält

→ Pro Objektpunkt 3 Koordinatenwerte
$$(\xi^{(P)}_{M}, \xi^{(c)}_{M}, \eta^{(c)}_{M})$$

Formeln der Sensor- bzw. Bildkoordinaten der Kamera ($\xi^{(c)}_{M}, \eta^{(c)}_{M}$):

$$\xi_{M}^{(C)} = \xi_{H}^{(C)} - c^{(C)} \frac{r_{11}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{21}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{31}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]}{r_{13}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{23}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{33}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]} + d\xi_{M}^{(C)}$$

$$\eta_{M}^{(C)} = \eta_{H}^{(C)} - c^{(C)} \frac{r_{12}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{22}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{32}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]}{r_{13}^{(C)} \left[x_{M} - x_{0}^{(C)} \right] + r_{23}^{(C)} \left[y_{M} - y_{0}^{(C)} \right] + r_{33}^{(C)} \left[z_{M} - z_{0}^{(C)} \right]} + d\eta_{M}^{(C)}$$

Zusammenfassung:

- mit einer Kamera und einem Projektor erhält man 3 Zwischenwerte pro Objektpunkt (1 Phasenwert, 2 Bildkoordinaten)
- mit Hilfe der Systemparameter Bestimmung der 3-D-Koordinaten möglich
- Bestimmung der Systemparameter erfordert separate Kalibrierungsstrategie

3. Konzept der selbstkalibrierenden 3-D-Messsysteme, basierend auf Streifenprojektion (Phasogrammetrie)

Selbstkalibrierende Messung: wenn mehr als die notwendigen 3 Messwerte pro Objektpunkt ermittelt werden

- → Wie bekommt man diese **Zusatzinformation**?
- → Lösung: modifizierter Projektor
- Muss in der Lage sein das projizierte Gittermuster um 90° zu drehen
 resultiert in 2. Phasenmesswert pro Objektpunkt

$$\eta_M^{(P)} = \frac{(\Psi_M^{(P)} - {(P) \choose R})}{2\pi} \Lambda =$$

$$\eta_{M}^{(P)} = \eta_{H}^{(P)} - c^{(P)} \frac{r_{12}^{(P)} \left[x_{M} - x_{0}^{(P)} \right] + r_{22}^{(P)} \left[y_{M} - y_{0}^{(P)} \right] + r_{32}^{(P)} \left[z_{M} - z_{0}^{(P)} \right]}{r_{13}^{(P)} \left[x_{M} - x_{0}^{(P)} \right] + r_{23}^{(P)} \left[y_{M} - y_{0}^{(P)} \right] + r_{33}^{(P)} \left[z_{M} - z_{0}^{(P)} \right]} + d\eta_{M}^{(P)}$$

3.1 Kamera mit Sensor, Projektor mit rotierendem Gitter

Messanordung: - nur eine Kamera, modifizierter Projektor

→ Erhalt von 4 linear unabhängigen Messwerten ($\xi^{(P)}_{M}$, $\eta^{(P)}_{M}$, $\xi^{(c)}_{M}$, $\eta^{(c)}_{M}$) pro Objektpunkt

Unterschied zur Photogrammetrie (2 Kameras):

- 2 verschieden Messwerttypen (Phasen-, Pixelwerte)
 Trotz guter Suchalgorithmen, ist das Finden von
 Übereinstimmungspunkten in Photogrammetrie sehr zeitaufwendig und schwierig
- jetzt hingegen nur noch reduziert auf Zuordnung zwischen Phasen-, Pixelwerten (automatisiert)

→ Zwei Nachteile:

- verschiedene Typen der Messwerte
- Parameter von Kamera, Projektor werden in Berechnungen mit einbezogen

3.2 Selbstkalibrierende optische 3-D Messsysteme mit einheitlichen Messwerten

Ziel:

- Unabhängigkeit von Kamera-Eigenschaften
- Messung nur noch von Projektoren ausgehend (nur noch

Phasenwerte)

- Methode der "einheitlichen Abbildung" ("uniform reference")
 Prinzip:
- Benutzen von 2 Projektoren (oder Positionen) mit rotierenden
 Gittermustern und einer fixen Kamera
- Kamera zeichnet nur noch Gittermuster am Objekt auf (kein Einfluss)

→ Anzahl unbekannter, zu bestimmender, Parameter reduziert

Ergebnis:

- 4 Phasenwerte $(\xi^{(P1)}_{M}, \eta^{(P1)}_{M}, \xi^{(P2)}_{M}, \eta^{(P2)}_{M})$
- → 1 Wert redundant
- Kollinearitätsgleichungen durch Ersetzen, analog zu 3.1

Zusatz:

- Möglichkeit zur beliebigen Erweiterung des Messsystems (Netzwerk)
- n Projektions- Positionen \rightarrow erhält man $\xi^{(Pn)}{}_{M}$, $\eta^{(Pn)}{}_{M}$, mit $n \in \mathbb{N}$
- steigende Anzahl Messwerte pro Punkt, höhere Genauigkeit

4. Messgenauigkeit

Beschränkung auf Systeme mit Phasenwertsbestimmung

- → Genauigkeit der 3-D Bestimmung hängt nur ab:
 - Genauigkeit der Phasenmessung
 - Genauigkeit der Parameterbestimmung der Streifenprojektoren
 - Genauigkeit der Bildpunktsbestimmung

Phasenmessgenauigkeit

- digital pixel-adressierbare Streifenprojektionseinheit notwendig verschiedene Standards:
 - pixel-adressierbare "liquid crystal display" (LCD),
 - "driven image light amplifier" (**D-ILA**) Projektions Prinzip
 - "digital micromirror device (DMD)" array

- FH-Jena benutzt DMD (1024*768)
- → Phasenmessgenauigkeit von bis zu Λ / 400

- realisierbare Phasenmessgenauigkeit nicht unbedingt unabhängig vom Gitterabstand
- abhängig von den CCD-Elementen die das Messfeld abtasten
- → mindestens 5 -10 CCD-Elemente pro Gitterabstand notwendig

Parameter der Streifenprojektionseinheit

- Parameter werden während der Messung bestimmt
- Genauigkeit hängt stark von der Wahl der Position der Phasenwerte ab
- Parameter mit Genauigkeit von ca. 0.001 mm und 0.001°
 bestimmbar
- weitere Fehlerquellen durch bekannte Aufstellpositionen und Orientierungen verringerbar
- z.B. FH-Jena benutzt Projektionswinkel von ca. 35°

Genauigkeit der Bildpunktbestimmung

- Bildpunktbestimmungsgenauigkeit hängt u.A. von der
 Phasenmessgenauigkeit und der noch erkennbaren Menge an
 Gitterlinien ab
- noch erkennbare Menge an Gitterlinien pro Messbereich abhängig von der Anzahl der CCD-Elemente

Absolute Bildpunktbestimmungsgenauigkeit ΔC :

$$\Delta C = G(\Delta P / L)$$

- ... G : Größe (Höhe, Breite) des Gitters
- ... L : Anzahl der Gitterlinien in G
- $... \Delta P$: messbare Bruchteil einer Gitterlinie

5. Messresultate

- Messungen mit stationärem Messsystem mit DMD-Projektoren
- Testobjekt: gefurchte Platte mit 200*200 mm
- Platte besitzt 6 Rillen mit Tiefen zwischen 5 und 160 $\mu\,m$

- gemessen aus 8 Projektionsrichtungen und einer fixen Kamera
- alle 3-D-Koordinaten wurden direkt aus den Messwerten bestimmt, keine Filterungen oder Durchschnittsberechnungen wurden verwendet

Ergebnisse zeigen:

- 1. die Rillentiefen von 160, 80, 40, 20 μ m wurden exakt gemessen
- 2. das Schnittbild zeigt, dass die erreichte Messgenauigkeit
 - $\sigma < 10 \,\mu\,m$ ist

→ erzielte Messgenauigkeit von ca. 10⁻⁵

- ebenfalls möglich technische, komplexe Oberflächen abzutasten
- z.B. Ansaugstutzen eines Autos

- Messsetup: 5 Kameras und 8 Projektionsrichtungen

5. Messresultate

- größere Ganzkörperansichten realisierbar

Beispiele für Messsysteme:

Kolibri IIG-Scan(Messvolumen: 1500x1000x400)(Messvolumen:400x400x300)

Kolibri Flex (Messvolumen: 500x500x350) Kolibri Portal (Messvolumen: 2000x2000x1000)

6. Zusammenfassung

- selbstkalibrierende Streifenprojektionssysteme basieren auf der Photogrammetrie
- zur Selbstkalibrierung ein Zusatzmesswert erforderlich (4 Werte)
- erzielt durch spezielle **Streifenprojektionstechnik** mit **rotierbarem Gitter** und mehreren Projektions- und Kamerapositionen

Vorteile:

- Realisierung von **Echtzeitkalibrierung** ohne Kalibrierungs-Equipment
- Vollkörpermessung wird realisiert ohne Gebrauch von

Passmarken und Angleichungssprozeduren

Vermeidung von Angleichungsfehlern

• nur Phasenwerte und System Parameter für

3-D Koordinatenberechnung verwendet, daher hat die Kameraqualität keinen Einfluss auf Messgenauigkeit

→ (,,multiresolution" möglich)

- Messgenauigkeiten von \approx D * 10⁻⁵ werden erzielt (D:Messfeldgröße)
- viele Anwendungen denkbar:
 - Qualitätskontrolle
 - "3-D contouring"
 - Datengewinnung für CAD/CAM
 - "reverse engineering"

Ende

Ende