Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern

Björn Burow

SE Mustererkennung in Bildern und 3D-Daten

Lehrstuhl Graphische Systeme BTU Cottbus

Inhaltsübersicht

- 1. Einleitung
- 2. Methoden der Bildrückgewinnung
 - 2.1 Methode basierend auf Intensitäts-Invarianten
 - 2.1.1 Intensitätsinvarianten
 - 2.1.2 Wiedergewinnungsalgorithmus (Retrieval Algorithm)
 - 2.1.3 Halblokale Beschränkungen
 - 2.2 Methode zum Kurven Matching
 - 2.2.1 Basis Kurven Matching Algorithmus
 - 2.2.2 Weite Basis Linien Matching Algorithmus

1. Einleitung

- zwei Bildabstimmungsverfahren
 - Erfolg unabhängig von geometrischen u. fotogrammetrischen Beschränkungen
- erstes Verfahren
 - Nutzung lokaler Intensitätsvarianten u. halblokaler geometrischen Beschränkungen
- zweites Verfahren
 - Vergleich 3D Kurven und Linien
 - epipolare Geometrie und lokale fotogrammetrische Beschränkungen
- Kombination der Verfahren möglich
 - ergänzen sich bei Anwendung der Bildrückgewinnung aus Bilddatenbank

2.1 Methode basierend auf Intensitätsinvarianten

- Nachschlagetabellenmechanismus (Datenbank)
 - Merkmalsübereinstimmung u. Modell Suche/Zuordnung und Annäherung
- größte Schwierigkeit sind Geometrieeigenschaften (Liniengruppierungen)
- alternativ nutzt man fotogrammetrische Informationen zur Charakterisierung
- Idee der Indizierung:
 - Nutzung lokaler Intensitätsinvarianten als "Bildbeschreiber"
 - Deskriptoren werden an automatisch entdeckten Interessenpunkten (interest points) berechnet
 - Basis-Idee ist Nutzung der Auto Korrelationsfunktion, um Orte zu finden, wo sich Signal in zwei Richtungen verändert

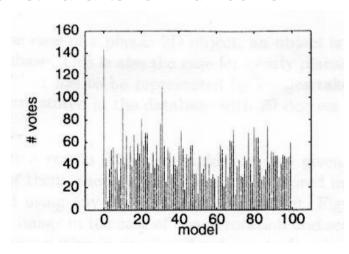
- Ergebnisse zeigen:
 - richtige Wiedergewinnung bei:
 - teilweise Sichtbarkeit
 - kleinen Umwandlungen
 - kleinen perspektivischen Verformungen

2.1.1 Intensitätsinvarianten

- Nachbarschaft jedes Interessenpunktes (interest point) wird durch einem Vektor von lokalen Intensitätsinvarianten beschrieben
- um Unveränderlichkeit im Bild zur erhalten, werden differentiale Invarianten berechnet → beschränkt auf 3. Ordnung
- Vektor mit Invarianten als V bezeichnet
- Invarianten werden in maßstabgetreues Gerüst eingefügt

2.1.2 Wiedergewinnungs-Algorithmus (Retrieval Algorithm)

- Vektor Vergleich
 - Mahalanobis Distanz $\mathbf{d_M}$ zweier invarianter Vektoren wird erzeugt, um die Zusammenhänge der markanten Punkte zu erkennen
 - die Distanz berücksichtigt die unterschiedliche Größe der Covarianzmatrix A der Komponenten
 - Merkmalsvektoren sind in die Distanz eingeunden
 - für zwei Vektoren a und b:

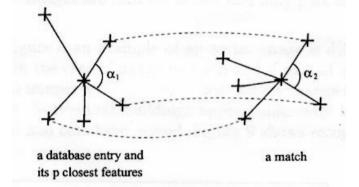

$$\mathbf{d}_{\mathbf{M}}(\mathbf{b},\mathbf{a}) = \vee (\mathbf{b}-\mathbf{a})^{\mathsf{T}} \mathbf{A}^{-1} (\mathbf{b}-\mathbf{a})$$

- Merkmale sind die Signal Stärke und Luminanzänderungen
- Mahalanobis Distanz ungünstig für schnelles Indizierungsverfahren
 - bei wenig Veränderung ist ausweichen auf Euklidische Distanz de möglich
- Bild Datenbank
 - enthält Gruppe {M_k} von Modellen
 - jedes Modell $\mathbf{M_k}$ wird von Vektoren der Invarianten $\{\mathbf{V_i}\}$ definiert
 - jeder Vektor V_j hat Bindung zu Model k
 - → es ergibt sich eine Datenbank (V_i,k)

Voting – Algorithmus

- Modellgruppe M_k finden, die am besten zu vorgegebenem Bild I passt
- für Bild wird Gruppe von Vektoren {V_I} anhand der Interessenpunkte (interest points) berechnet
- Vergleich der Vektoren mit V_j : $d_M(V_l, V_j) = d_{l,j}$ für alle (l,j)
- Voting erfolgt, wenn Entfernung unter Schwelle t
- Summe der Modellauswahl (T(k)) ist Ergebnis des Voting Algorithmus
- meistgewählte Modell repräsentiert M_k für k = arg max_kT(k)

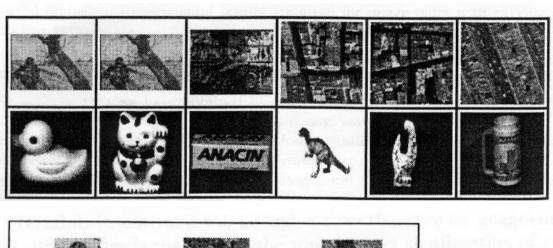
- Multidimensionale Indizierung
 - Indizierung des Voting Algorithmus durch I x N
 - I ist Anzahl von Merkmalen im Bild und N die Anzahl der Gesamtmerkmale in Datenbank
 - Indizierung notwendig, da N sehr groß werden kann
 - Suchstruktur ist Variante von k-d-Bäumen

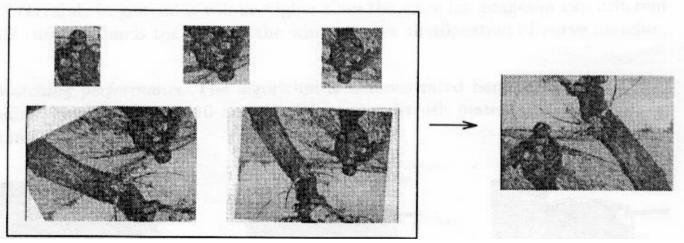

- Komplexität der Indizierung ist Reihenfolge von I (Merkmalen im Bild)
- sehr effiziente und schnelle Methode

2.1.3 Halblokale Beschränkungen

- halblokal, da von anderem Raum aus betrachtet
- - hinzufügen lokaler Formkonfiguration

• für jedes Merkmal (Interessenpunkt) in DB wird nächste p im Bild


gewählt

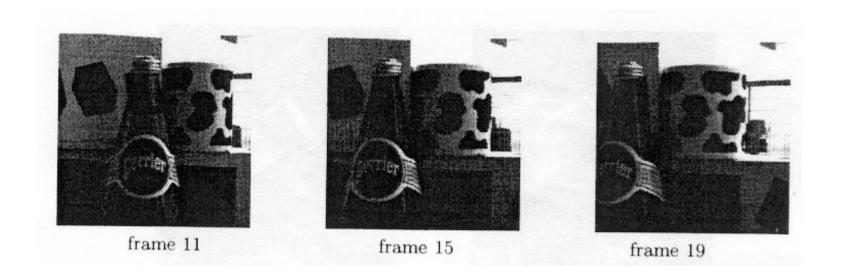


- bei Notwendigkeit , dass alle p korrekt übereinstimmen, wird angenommen, dass es keine Fehl – Erkennung von Punkten gibt
 - → nötig, dass 50 % der Nachbarpunkte übereinstimmen

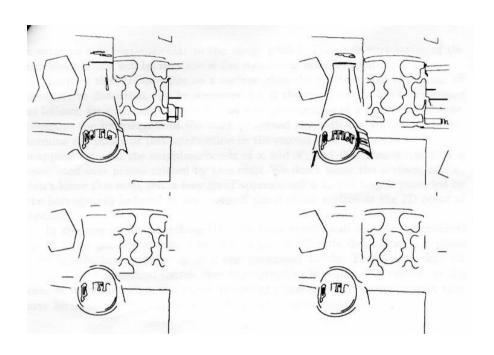
- um Erkennungsrate zu vergrößern, werden geometrische Beschränkungen hinzugefügt
 - Winkel- und Längenverhältnisse der halblokalen Formkonfiguration muss konsistent sein

Versuchsergebnisse

2.2 Methode zum Kurven - Matching

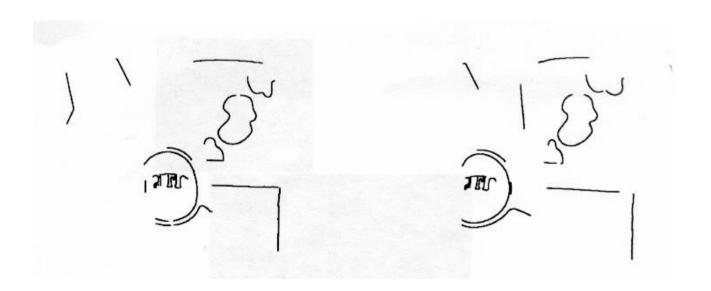

- für Zeilen- u. Kurvenabstimmung zwischen zwei perspektivischen Bildern einer von unterschiedlichen Standpunkt erworbenen 3D-Szene
- Annahme:
 - 3D Wirkungen können nicht ignoriert werden
 - grundsätzliche Matrize "F" für Bildpaar vorhanden
- Methode ergänzt geometrische von fotogrammetrischen Beschränkungen → Intensität der Nachbarschaft wird ergänzt
- besonders wird Ähnlichkeit der Kurven von Querbeziehungen an entsprechendem Punkt abgeschätzt

2.2.1 Basis – Kurven – Matching - Algorithmus


- Annahme, dass es Linien und Kurven in jedem Bild gibt
- bestimmt werden soll, welche Zeile/Kurve übereinstimmen (wenn überhaupt)
- sehr hoher Rechenaufwand, wenn für jeden Punkt im einen Bild das komplette andere Bild durchsucht wird
 - absuchen einer Linie genügt
- Nutzung der Epipolar Geometrie

- Nutzung der photogrammetrischen Informationen zur Ermittlung von Ähnlichkeitswerten
- Berücksichtigung zweier möglichst ähnlichen Kurven c und c im ersten und zweiten Bild
 - Kurven sind ähnlich, wenn sie die gleiche 3D-Kurve erzeugen
- bei Entsprechung kann ein Punkt, um Übereinstimmung auf Kurven zu deuten, bei Nutzung der Epipolar-Geometrie bestimmt werden:
 - für Bildpunkt x auf Kurve ist die Epipolar-Linie im zweiten Bild $\mathbf{I'}_e = \mathbf{F} \mathbf{x}$
 - diese Linie schneidet die Kurve c' im Punkt x' ähnlich zu Punkt x
 - Voraussetzung ist, dass x und x Bilder des gleichen 3D Punktes sind
 - Folglich sollten Image Intensitätsnachbarschaften von x und x´ ähnlich sein
 - Ähnlichkeitswerte für c und c' werden bestimmt, in dem man den Durchschnitt von Ähnlichkeiten von Nachbarschaften ermittelt
 - die Ähnlichkeit von Nachbarschaften wird durch Kreuz-Korrelation ermittelt

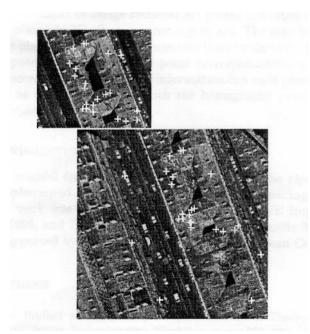
- je mehr sich die Kurven entsprechen, desto h\u00f6her sind die \u00e4hnlichkeitswerte
 - im allgemeinen sein werden die Werte h\u00f6her sein als die Werte f\u00fcr Bilder zweier unterschiedlicher 3D-Kurven
- das bildet Basis für das Kurven Matching


- Flaschensequenz
- ausgewählte Frames um Bilderpaare zu bilden
- Kamerabewegung sehr einheitlich, Entfernung so gut wie gleich

- Kurze Grundlinien Vergleich für Frame 11 und 15 einer Flaschensequenz
- obere Paar:
 - gewonnenen Umrisse (37 links, 47 rechts) der Kurven, die für Algorithmus verwendet wurden
- untere Paar:
 - zeigt nur Teile, bei denen gleiche Kanten erkannt wurden (29 Umrisse)

2.2.2 Weite – Basis – Linien – Matching – Algorithmus

- Anwendung bei größerer Blickwinkelrotation oder breiten Basislinien zwischen den Ansichten
- Bsp.:
 - Vergleich der Frames 11 und 19 der Flaschensequenz
 - 16 ähnliche Kurvenumrisse wurden entdeckt, davon sind 14 an der richtigen Position (87,5 %)



3. Effizienz der Indizierung von Interessenpunkten (interest points) bei Kurvenverifizierung

- unter 2.1 wurde gezeigt, wie gegebenes Bild mit Hilfe einer Bilddatenbank wiedergewonnen werden kann
 - effizientes Verfahren durch Indizierung von Interessenpunkten (interest points)
 - Gruppenzuordnung und Bildzuordnung weiterhin notwendig
- gezeigt wird, dass Kurven Matching ebenfalls genutzt werden kann
- Annahme, dass Bild und Datenbankbilder Ansichten unterschiedlicher Aussichtspunkte in 3D-Szene sind
- erste Überprüfung:
 - bestimmt, ob "interst points" epipolarer Geometriebeschränkungen entsprechen
 - Ergebnis: zwischen Bild und Datenbankbildern ist grundsätzliche Matrix vorhanden

zweite Überprüfung:

- Zeilen/Kurven Vergleich aus Abschnitt 2.2
- wiedergewonnene Bild erhält Rang
- umso höher Rang, desto größer ist Überlappung der Blickpunkte der 3D-Szene

- 11 Bilder in Datenbank mit mehr als 7 gleichen Interessenpunkten
 - mindestens notwendig, um Fundamentalmatrix zu berechnen

- Bilder werden durch Indizierung lokaler Intensitätsinvarianten und durch halblokale geometrische Beschränkungen bestimmt
- Kurven Matching aus Abschnitt 2.2 wird auf jedes Bildpaar angewendet
- Kombination der grundsätzlichen Matrix mit den zusätzlichen geometrischen und fotogrammetrischen Beschränkungen ist beste Bildvergleich
 - Vereinigung des Indizierung von Interessenpunkten (interest points) mit dem Kurven - Matching

4. Zusammenfassung

- zuerst wurde gezeigt, dass Punktübereinstimmungen zwischen zwei Bildern mit Hilfe von Intensitätsmustern möglich ist (Datenbankindizierung)
- entscheidend ist Nutzung geometrischer Beschränkungen in Form lokaler Kohärenz auf Punktmustern
- Mehrdeutigkeit wird durch Einführung fotogrammetrischer Beschränkungen versucht zu beseitigen
- beide Verfahren gut für Abstimmung von Bildern einer 3D-Szene mit unterschiedlichen Blickwinkeln
- 3D Wirkungen können je nach Anforderung auch ignoriert werden

5. Literaturhinweise

 Schmid, Cordelia; Zisserman, Andrew; Mohr, Roger: Integrating geometric and photometric information for image retrieval. *Lecture Notes in Computer Science* 1681 (1999), 217–233