Grundzüge der Computergrafik (WS 2007/08)

Übungsblatt 3

Aufgabe 1 (Clipping)

R sei ein rechteckiges Fenster, dessen linke untere Ecke bei (-3; 1) und dessen rechte obere Ecke bei (2; 6) liegt.

- (a) Wie lauten im Cohen-Sutherland-Algorithmus die Outcodes für die Punkte A = (-4; 2), B = (-1; 7), C = (-4; 7), D = (-2; 10), E = (-2; 3), F = (1; 2) bzgl. des Clipping-Fensters R?
- (b) Man führe die Fallunterscheidung des Cohen-Sutherland-Algorithmus für die Linien AB, CD und EF bzgl. des Fensters *R* durch (Clipping-Kategorien).
- (c) Man führe für AB das Clipping durch.

Aufgabe 2 (Bézier-Kurven)

Die vier Punkte $P_0 = (0; 2)$, $P_1 = (2; 6)$, $P_2 = (7; 4)$, $P_3 = (8; 1)$ seien die Kontrollpunkte einer kubischen Bézier-Kurve Q(t).

- (a) Stellen Sie die Parametergleichung dieser Kurve auf ($t \in [0; 1]$).
- (b) Bestimmen Sie mittels des de Casteljau-Algorithmus rechnerisch und zeichnerisch (durch iterierte Streckenteilung) den Kurvenpunkt für t = 3/4.

Aufgabe 3 (Coons-Flächen)

Q(u, 0) stelle für $u \in [0; 1]$ einen Halbkreis mit Mittelpunkt 0 und Radius 1 in der positiven xz-Halbebene dar, Q(u, 1) einen Halbkreis mit demselben Mittelpunkt und Radius in der positiven xy-Ebene. Die Kurven Q(0, v) u. Q(1, v) seien jeweils zu einem Punkt ((1; 0; 0) bzw. (-1; 0; 0)) entartet. Man berechne den Coons-Patch mit linearen Blendingfunktionen, der von diesen Randkurven aufgespannt wird.

Aufgabe 4 (Transformationen in der Ebene)

Man zerlege die Transformation, die einen Objektpunkt $Q \in \mathbb{R}^2$ an der Geraden mit der Gleichung y = mx + b spiegelt, in elementare Transformationen.

Aufgabe 5 (Fenster-Transformation in der Ebene)

Man bestimme die allgemeine Form der affinen Transformation, die ein rechteckiges Fenster mit dem x-Bereich xw_{\min} bis xw_{\max} und dem y-Bereich yw_{\min} bis yw_{\max} auf einen rechteckigen Viewport mit dem x-Bereich xv_{\min} bis xv_{\max} und dem y-Bereich yv_{\min} bis yv_{\max} abbildet.

Aufgabe 6 (Transformationen im Raum)

- (a) Wie lautet die Matrix der 180°-Drehung um die Achse mit dem Richtungsvektor (1; 0; 1), die durch den Nullpunkt geht?
- (b) In welchen Punkt wird der Punkt (-4; 2; 3) durch diese Transformation gedreht?

Aufgabe 7 (homogene Koordinaten; Transformationen im Raum)

Gegeben sei die Menge A im R³ durch

 $A = \{(x, y, z, w)^T \mid 4x - 3y + z - 5w = 0\}$ in homogenen Koordinaten.

- (a) Man zeige: A stellt eine Ebene dar. Man gebe 3 Punkte auf A an.
- (b) A werde einer Scherung S entlang der x-Achse unterworfen:

$$S = \begin{pmatrix} 1 & 0.5 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Man gebe eine Gleichung der Bildebene von A unter dieser Transformation an.

(c) Man kontrolliere an diesem Beispiel, dass für einen Normalenvektor n' der Bildebene tatsächlich (wie in der Vorlesung behauptet) gilt: $n' = (S^{-1})^T \cdot n$, wobei n der alte Normalenvektor ist.