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Abstract. A formal language approach for the specification of ALife
models is presented. “Relational Growth Grammars” incorporate rule-
based, procedural and object-oriented concepts. By enabling parametric
Lindenmayer systems to rewrite multiscaled graphs, it becomes possible
to represent genes, plant organs and populations as well as developmental
aspects of these entities in a common formal framework. Genetic oper-
ators (mutation, crossing-over, selection) take the form of simple graph
rewrite rules. This is illustrated using Richard Dawkins’ “biomorphs”,
whereas other applications are briefly sketched. The formalism is imple-
mented as part of an interactive software platform.

1 Introduction

High-level, rule-based languages exhibit several features that make them suit-
able for biological modelling: Being both transparent in use and not requiring
constant re-compilation of the code after modification (thanks to powerful string
parsers), they could potentially be developed into a universal language for biol-
ogy and Artificial Life—enabling easy specifications of models from the level of
biochemistry and genetics up to the level of ecological interactions. We undertake
one further step towards such a specialized formal language.

Since the advent of L(indenmayer)-systems in 1968 [12], these string rewrit-
ing grammars have been primarily used to model growth and architecture of
individual plants [15]. By using fixed rule tables and lineage-controlled replace-
ment, most classical models of this sort emphasize the genetically based aspects
of morphogenesis (it was not until the Nineties that “globally sensitive” and
“open” L-systems took the environment into account [10, 13]). Nevertheless, no
genetics whatsoever was usually represented in such L-systems, despite of the
double-string structure of DNA which seems to predestinate it to be described
in a string-rewriting formalism. The “interactive barley” model by Buck-Sorlin
and Bachmann [1] is one exception, despite its not properly exploiting the string
nature of the genome. Dassow and Mitrana [2] have devised a formal string



rewriting language called “evolutionary grammars” to represent genetic opera-
tors (e.g., mutation, recombination). However, their formalism is restricted to
the genetic level and is unable to model architectural or behavioral aspects of
the phenotype. Kim [9] has developed transsys, a software tool enabling the
specification and dynamic simulation of gene expression, transcription factors
and L-system-based morphogenetic processes. Though this is a step in the right
direction, transsys treats genetic activity and macroscopic morphogenesis with
different formalisms.

Godin and Caraglio [8] show how the integration of several scaling levels
in one coherent framework could be done: They defined “multiple-scaled tree
graphs” (MTGs) to describe branching structures simultaneously at several de-
grees of spatial resolution. Although their approach is basically static and does
not encompass the genetic level, it served as a model for our “relational growth
grammar” data structures in which binary relations play a key role.

In the following, we will sketch our improved formal language and show its
applicability to ALife model specification by “reincarnating” the biomorphs from
Richard Dawkins’ book “The Blind Watchmaker” [3]. In the Discussion and
Conclusions, our framework will be exemplified using other ALife formalisms,
and the perspectives of our approach will be shown.

2 Relational Growth Grammars

2.1 The data structures

Typical data structures in biological models can be roughly categorized as fol-
lows:

Multisets, i.e. unordered collections where the same element can appear sev-
eral times (examples: unstructured populations, molecules in a solution). L-
systems operating on multisets were introduced in [11].

Strings (equivalent to 1-dimensional arrays or lists) with strict linear or-
der amongst the elements. In our graph-related approach we will use special
directed edges of type “successor” to connect elements which follow each other
directly in this order relation. As classical L-systems will be embedded as a spe-
cial case in our formalism, we will assume that two subsequent symbols in a
grammar-generated string will automatically be connected by a successor edge.
(Exceptions are the symbols “[” and “]”, which will no longer be treated as
parts of a string but encode branches in a more direct way than in classical
L-systems, see below.) The successor relation corresponds to Godin’s “>” re-
lation [8].—Biological examples are genomes and linearly ordered architectural
substructures (e.g., tree branches).

Axial trees allow to combine strings by a “lateral branch” relation, corre-
sponding to Godin’s “+” and symbolized by the bracket notation from classical
L-systems [15] where the brackets are used to encode branching in a string and
only become important in the (turtle) interpretation, whilst in our model new
branches instantly arise at rule application. Axial trees in nature correspond to
botanical trees (at the macroscopic level).



Relational structures (or edge-labelled directed graphs) generalize all these
basic structures. Here, arbitrary user-defined types of edges are permitted, rep-
resenting relationships not yet covered by the above basic structures—e.g., the
relation between genotype and phenotype, or the “contains” relation connecting
compound entities with their parts (Godin’s “/”). Using the “successor” and the
“contains” relation, a string can be represented as in Fig. 1.

Fig. 1. A string represented by an edge-labelled graph. Continuous edges denote the
successor relation, dashed edges the “contains” relation. The filled “basal” node rep-
resents an object at a lower level of resolution (multiscaled approach, cf. [8]).

The structures are implemented with Java: Each graph node is an object in
the sense of object-oriented programming. Every node pair can be connected
by a set of labelled edges. This flexible data structure permits communication
between nodes, by sending messages along a certain edge type. It is also used
in our interactive application to constitute an easy-to-use user interface, e.g.
interaction controls can be connected to data nodes by edges.

2.2 The formalism

A documentation with complete definitions of the concepts used here will be pub-
lished elsewhere. Here we list only the main items characterising the Relational
Growth Grammar calculus:

– Graph grammars are used to rewrite the data structures described above.
Contrary to classical L-systems, several nodes (generalising the symbols in
L-systems) can appear on the left side of a rule. In the most general case,
entire subgraphs are rewritten. Our graph grammars, using both node and
edge labels, were partly inspired by the PROGRES system (see [18]).

– Commands of turtle geometry (originally from parametric L-systems and in
the systematized variant used by the Grogra software [10]) are allowed as
nodes and serve to interpret the generated graphs geometrically if necessary.
E.g., the command “F” (without parameters, with a length, or with dis-
placement coordinates as parameters) causes the creation of a solid cylinder
representing, e.g., a (botanical) internode.

– Variables, functions and relations can be defined by the user. (The declara-
tion of several types of random variables was already implemented in Grogra
[10].) Procedural programs (scripts) in a Java-like language can be inserted



into a rule and will be executed when the rule is applied (cf. [16] for C
fragments in L-systems).

– We use a variant of table L-systems ([17]; cf. “sub-L-systems”, [14]) to control
directly the order in which certain groups of rules are to be applied—mainly
for transparency and convenience reasons; the order of rule application could
also be encoded in additional parameters and conditions.

– Essential to all rule-based languages are the processes of matching and re-
placement, into which the application of a rule can be decomposed. Three
modes of rule application can be distinguished, according to the way these
processes are evoked within a single rewriting step: Parallel matching and
parallel replacement is the default method in classical L-systems, in other
transformation systems, e.g. in CA, and also in our formalism. When using
this mode one has to be aware of possible resolution conflicts with overlap-
ping matches. The other two modes are sequential matching and replacement
immediately after each match and sequential replacement, i.e. in each rewrit-
ing step only one match is exploited. For our examples only parallel matching
and replacement are needed as resolution conflicts do not occur.

– Conditions can be specified to control the matching process, probabilities act
upon replacement (cf. [15]).

– Graph contexts can be defined in a general manner, in particular they are
not confined to left and right contexts in the sense of string matching.

2.3 Example: Crossing-over

To show the potential of our new formalism, we chose the example of crossing-
over (co), an important biological process essentially consisting in the exchange
of aligned, homologous substrings (alleles) of matching chromosomes (cf. Fig. 2).

This process can be modelled using classical L-systems if the number of genes
involved is low. With more than a few genes, the exhaustive listing of all possible
multiple co events will become too long. In our new formal framework, we will
represent the genomes by strings which are associated with the organisms by
edges of a graph. Co will be modelled by one single graph-rewrite rule.

To encode co events, we need two additional relations (i.e., edge types): “Mat-
ing” between the two strings which are (potential) objects of co, and “alignment”
between homologous gene loci. The latter can be defined on a pair j, k of nodes
representing a single gene using the built-in function “index”, which returns the
position of an item within a string:

j align k := index(j) == index(k)

Co can then be described by the graph rewrite rule shown in Figure 2a, which
can be written down as follows:

j k, m n, j align m,
(
match(base(j) mate base(m))

)

−→−→−→ (
prob(pr(dist(j, k)))

)
? j n, m k



The left hand side lists the “successor” relation between j and k, m and n, which
is expressed by blanks (as in Grogra), and the alignment between j and m. The
alignment between k and n, although indicated in Fig. 2a, can be omitted in
the condition because it follows from j align m. If a matching subgraph is found
and the mating condition is met, i.e., the basal nodes are connected by a mate
edge, the rule applies: With the recombination probability pr depending on the
genetic distance dist between two loci the “successor” relations are redirected as
in Figure 2a, otherwise the rule is not applied. —Matching of the rule is checked
at all possible positions, thus making double or multiple co’s in extra rules (as
would have to be done with classical L-systems) dispensable. In order to prevent
the “mirror match” resulting from the (j, k)-(m,n)-symmetry of the left hand
side no two matches may consist of the same sets of matched nodes.

(a) (b)

Fig. 2. A relational growth grammar rule representing co (a) and its application to
a pair of strings (b). Continuous edges denote the “successor” relation, dashed edges
containment, and point-edges alignment.

3 The example of Biomorphs

We will now apply the new formalism, including the co rule from the last section,
to a well-known example, the “Blind Watchmaker” programme, written by the
zoologist Richard Dawkins [3] and inspired by the seemingly blind phenomenon
of evolution by mutation and selection. Based on a simple genotype-phenotype
model [4], it originally consists of two Pascal procedures: The first reproduces the
genotype, thereby making new individuals and introducing some random chance
mutation. In the second the development of the phenotype is modelled using a
recursive tree-drawing routine with the genes’ values as parameters (depth of
recursion, direction of branches). The genotype consists of nine genes, eight of
which have 19 alleles ranging from -9 over 0 to +9, the ninth a range from 0 to
9, in integral steps. The latter gene determines recursion depth. The other genes
are translated into components of a matrix d which represent the horizontal,
resp. vertical setoffs in a global coordinate system to be used in the development
of the growing binary tree. The programme is started off with an initial set of



alleles, which is then modified in the offspring by applying random mutations
with given probability.

The parent and its offspring are displayed on the screen, and the user se-
lects one of the offspring for further reproduction. By piling-up mutations in
a certain direction a shortcut is taken through the multidimensional genotypic
parameter space with its billions of possibilities, thereby arriving at astonishing
“biomorphs”. Our relational growth grammar will furthermore provide a possi-
bility to select two parent individuals from which offspring is generated using
the co rule shown above.

The following table of relational growth grammar rules contains both alter-
natives, simple vegetative reproduction (using “SelectOne”) and reproduction
from two parents involving co (using “SelectTwo” and “Recombine” instead).

Initialize: α −→−→−→ population contains−−−−−→ genome [1 1 1 1 1 0 −1 −1 5]

Reproduce: p:population contains−−−−−→ g:genome
−→−→−→ p &

(
i=0..14, [ contains−−−−−→ germ(200*i) encodes←−−−−− g.cloneTree]

)

Mutate: int −→−→−→ (
prob(pm)

)
? irandom(−9, 9)

Grow: germ(x) (* encodes←−−−−− g:genome *)
−→−→−→ biomorph f(x,0,0) biom(abs(g[8])+1, 2);

b:biom(depth,dir),(
match(root(b) encodes←−−−−− g:genome) && (depth > 0)

)

−→−→−→ {
int[ ][ ] d =

{{−g[1], g[5]}, {−g[0], g[4]}, {0, g[3]}, {g[0], g[4]},
{g[1], g[5]}, {g[2], g[6]}, {0, g[7]}, {−g[2], g[6]}};

}
F(depth*d[dir mod 8][0], 0, depth*d[dir mod 8][1])
[biom(depth−1, dir−1)] [biom(depth−1, dir+1)]

SelectOne: population contains−−−−−→ b:biomorph encodes←−−−−− g:genome,
(
isSelected(b)

)

−→−→−→ ˆpopulation contains−−−−−→ g

SelectTwo: population [ contains−−−−−→ b1:biomorph encodes←−−−−− g1:genome]
[ contains−−−−−→ b2:biomorph encodes←−−−−− g2:genome],(

isSelected(b1) && isSelected(b2)
)

−→−→−→ ˆpopulation [ contains−−−−−→ g1] [ contains−−−−−→ g2], g1
mate g2

Recombine: int j, k, m, n;
j k, m n, j align m,

(
match(base(j) mate base(m))

)
−→−→−→ (

prob(pr(dist(j,k)))
)

? j n, m k;

g:genome mate genome −→−→−→ g

Rule “Initialize” replaces the axiom α by a new population containing a single
genome (a string consisting of nine integer nodes). In the next step, “Reproduce”,
this configuration matches the left hand side. The population p is retained in
the new graph, but there it no longer contains the genome g but 15 biomorph



germs encoded by a copy (“cloneTree”) of g. The “encodes” edge symbolizes the
genotype-phenotype relationship. The rule makes use of the repetition operator
&(range, ...).

After reproduction all genes are subject to mutation: “Mutate” replaces a
gene (represented as an integer value) with a random value, uniformly distributed
over the integer range −9, . . . , 9. The mutation probability is pm.

In the first rule of “Grow” germination occurs, i.e., each germ is replaced by
a new biomorph. The actual geometric structure of a full-grown biomorph, its
phenotype, will be represented by subordinate nodes, the first of which is the
f(x,0,0)-node which acts as a coordinate displacement in the specified direction
(thus resembling the turtle command “f” in classical L-systems) and ensures non-
overlapping biomorphs (the parameter x was set in “Reproduce” to 200*i with
the biomorph index i). The biom-node next to f(x,0,0) initiates the recursive
growth process of the morphogenetic second rule of “Grow”. The initial depth
parameter of biom is taken from the genome g encoding the germ: Essentially
the child node of g with index 8 is selected, the actual expression abs(g[8]) + 1
ensures positive recursion depth values. “abs” is built in like any other usual
math function. The initial dir parameter is set to 2. Since g is enclosed in context
parentheses (*...*) it is not considered as a part of the replacement process and
remains in the graph, though not listed as a node on the right hand side. However,
the encoded object changes from germ to biomorph.

The morphogenetic second rule of “Grow” “grows” a biomorph according
to Dawkins’ model: A biom node splits into two biom branches with opposite
changes of dir, preceded by the creation of a twig which is implemented by an
F-node in our graph and by a line drawing instruction in Dawkins’ Pascal pro-
gramme. The F(x,y,z)-node corresponds to the F-command of turtle graphics,
i.e., it acts as a coordinate displacement for subordinate nodes and is also a
visible line segment. Its (phenotypic) vector coordinates are determined via an
intermediate step (cf. the calculation of the auxiliary variable d in the Java-like
script section) by the genotype g which is connected by an “encodes”-edge to the
root of the growing biomorph tree, namely the biomorph. The growth process
terminates when depth reaches 0.

“SelectOne” provides user interaction: If the user selects a biomorph, the
whole population is replaced by a new one containing only the genome g of
the selected biomorph. ˆ represents the root node of the whole scene, so the
new population becomes a child of this root node. Now the situation resembles
that after “Initialize” but with a possibly mutated genome. Biomorph evolution
proceeds with “Reproduce” as described.

So far the procedure reproduces Dawkins’ programme. Upon substituting
“SelectOne” by “SelectTwo” and “Recombine” the grammar lets the user select
two biomorphs and performs co of their genomes before creating a new biomorph
population out of the mated genome: After the user has selected two biomorphs,
rule “SelectTwo” replaces the whole population with a new one containing the
genomes of the two selected biomorphs, connected by a “mate”-edge indicating
that co is potentially to be carried out. The first rule of “Recombine” performs



this co as described in section 2.3. The second rule discards one of the two
genomes, the other one remains in the graph and leads to a new biomorph
population when the grammar application proceeds with “Reproduce”.

This sequence of rule application can be specified formally as a table:
Initialize: 1 step
for(i = 0; i < nbgenerations; i++) {

Reproduce: 1 step
Mutate: 1 step
Grow: * steps
SelectOne: 1 step /* or SelectTwo: 1 step; Recombine: 1 step */

}
A sample population of 15 biomorph mutants is shown in Fig. 3.

Fig. 3. Population of mutants of the genome (1,−3, 8,−4, 5,−9,−4, 9, 8)

4 Discussion and Conclusions

Relational growth grammars can model complex genetic operations like multiple
co, while at the same time being flexible enough to model the ramified architec-
ture of the phenotype (see biomorph example). This universality is confirmed by
the successful re-implementation of other classical ALife scenarios in our formal
framework. Notably, our grammars are proper extensions of L-systems, hence all
plant models obtained with L-systems (e.g., [15]) can be reproduced.

Another calculus which got some attention in the ALife community is Artifi-
cial Chemistry (cf. [6]), i.e., a model of the dynamics of large numbers of artificial



“molecules” in a virtual solution. A simple example is a “chemical” prime num-
ber generator [19], where the molecules are integers and their interaction in the
case of collision is expressed by the following grammar rule:

a:int, b:int, (bmod a == 0) −→−→−→ a, b/a

Given an initial “soup” (multiset) of random integers, the iterated and nondeter-
ministic application of the above rule leads to an increase of the “concentration”
of prime numbers in the solution, finally approaching 100%.

Cellular Automata (CA) are another good example: The underlying grid of a
CA could be constructed in our approach, e.g., by iterating rules associated with
the symmetry group of the grid. Then the cells of the CA are the nodes of our
graph, and the context of a cell can be defined as a multiset- or vector-valued
function using the neighbourhood definition of the grid. E.g., the transition rule
of Conway’s famous Game of Life [7] can be expressed as follows:

x:int,
(
x == 1 && x.context.sum in {2, 3}) −→−→−→ 0

x:int,
(
x == 0 && x.context.sum == 3

) −→−→−→ 1

If one were to criticize the wealth of computational tools created as an answer
to the flood of biological information produced in the recent past, one should
mention the lack of universality and transparency characterising many of them:
They are often tailored to a specific problem and cannot be applied to a different
discipline or a different organism. This rigidity is mostly due to some implicit
structural rigidity “hardwired” within the source code. The extended L-system
approach presented here tries to overcome this problem by providing a universal
modelling language which is still transparent enough to be understood and ap-
plied by biologists or agronomists. We believe that universality and transparency
are essential prerequisites to tackle future problems in biological modelling.
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