
11. Automata and languages, cellular automata,
grammars, L-systems

11.1 Automata and languages

Automaton (pl. automata): in computer science, a simple
model of a machine or of other systems. (→ a simpli-
fication of real machines or systems)

Examples:
Some systems to be modelled as automata with finite
description

Example 3: A sugar-digesting bacterium

Inputs: glucose (g), lactose (l), nothing (n)

Outputs: lactase gene activated (a), lactase gene
inactive (i) – can be measured in the laboratory by
methods from molecular genetics

States: lactose-digesting (1), glucose-digesting (2),
dormant (3)

Abstract notion: the Mealy automaton

(remember: δ : Q × Σ → Q means that the function δ
associates to each pair (q, s) with q from Q, s from Σ
an element δ(q, s) ∈ Q. For λ analogously.)

Formal languages:

Definitions concerning words and formal languages:

The length |w| of a word w is the number of its letters.
The length of the empty word ε is 0.

The language of all finite words over an alphabet Σ,
including the empty word, is denoted by Σ*.
 (In the example above: L2 = Σ2* .)

The language of all non-empty words over Σ is denoted
by Σ+. Σ+ = Σ* – {ε}.

The language of all words of length n over Σ is denoted
by Σn. Σ0 = {ε}.

• L+ is defined similar to L*, only the empty sequence of
subwords is not allowed. ε is in L+ only if it is already in L.

The connection between automata and formal
languages:

How can we define a language using an automaton?

First idea: collect all input sequences for which the
corresponding output of the automaton ends with a
special symbol "accept".

→ Formal language definition by Mealy automata:

We simplify the notion of automaton:
The output is no longer necessary, only the states are used.

→ notion of "finite automaton" (FA); also called
"deterministic finite automaton" (DFA):

A finite automaton is a quintuple

FA can be used to check the correctness of statements in
simple programming languages ("accept" = input was
syntactically correct; "reject" = an error was detected).
However, more complicated languages need other, more
refined forms of automata.

The languages for which a finite automaton exists
form a special class of languages:

Regular expressions over an alphabet Σ

= a way to define "allowed" character sequences (or
sequences of commands...), also used e.g. in search
queries in databases or information systems
– stand in connection with regular languages

We give a recursive definition:

The connection to regular languages (i.e., to finite
automata):

Theorem:
The languages which can be defined by regular
expressions are exactly the regular languages.

This justifies the word "regular" for languages definable
by FA.

Proof: by construction of FAs for each of the alternatives for the
construction of regular expressions, and vice versa.

Summary of this section:

11.2 Cellular Automata

What will happen if we connect several finite automata
with each other?

• A 2-dimensional Cellular Automaton (CA) is a

rectangular (potentially infinite) array of cells. In each
of the cells there is a finite automaton (→ each cell
can adopt a finite number of states).

• All the automata in the cells have the same
functioning.

• In each time step, each cell takes as input the states
of all its neighbour cells and uses them to calculate
its own new state (using a "transition function").

• The output of the CA is in each time step the pattern
of the states of all the cells.

Formally: (G, Q, δ, c)
G(i,j) : grid of cells with indices i, j
Q : set of states
δ : Qn+1 → Q transition function (works in each cell)
 (n = size of the neighbourhood)
c : G → Q initial configuration

1- dimensional, 3-dimensional ... CA can be defined
analogously. Sometimes also triangular or hexagonal
grids are used.

An example of a 2-dimensional CA:
Conway's "Game of Life"

Only 2 states: 1 = "living", 0 = "dead".
Neighbourhood: 8 cells (as above).
Simple transition rule, counting only the number of living
cells in the neighbourhood as input.

Living cell, surrounded by 2 or 3 living cells → living
Dead cell, surrounded by exactly 3 living cells → living
in all other cases → dead

Expressed in other words:

 this configuration is called a "glider".

What else can happen in this simple "world"?

Other example development:

→ ends in a periodic pattern.

"Glider gun" (dark) emitting "gliders" (brighter):

Computer scientists have shown that the Game of Life can even
simulate a computer with logical circuits (AND, OR, NOT -
switches) – hence all what can be calculated can be calculated
using the Game of Life!

But: Game of Life rules do not reflect real-world properties
→ no significance for real-world ecological modelling

Using more states and other sets of transition rules,
cellular automata can be designed to simulate real-world
spatial patterns and dynamics.

Examples:
• spreading of forest fires
• spreading of rabies disease in fox populations
• colonisation of a habitat by a new species
• formation of colour patterns on seashells
• chemical reaction patterns
• architecture...

Example: CA simulating the spreading of an epidemic
(University of Leipzig)

Example: Architectural interpretation of a 3-dimensional
CA (Robert J. Krawczyk, http://www.iit.edu/~krawczyk/rjkga03.pdf)

Disadvantages of CA in simulation applications:

• only discrete time steps
• some directions in space are preferred (due to the

underlying grid)
• limited speed of interaction – no far-reaching,

immediate effects possible

11.3 Grammars

Idea: Complex structures, e.g. the sentences of our
natural language, can be described by simple rules.

For example, many sentences have the form:
Subject - predicate - object.

Definition:
A Chomsky grammar is a quadruplet

(ΣN, ΣT, X, R),
where ΣN and ΣT are disjunct sets of symbols, X ∈ ΣN
and R is a finite set of rules of the form A → B
 where A and B are words over the alphabet ΣN ∪ ΣT
 and A contains at least one symbol from ΣN.
(after Noam Chomsky, American linguist and philosopher)

Symbols from ΣN are called nonterminal symbols,
those from ΣT terminal symbols.
X is the start symbol.

A derivation of a grammar is a sequence of words,
beginning with X, where each word is obtained from its
predecessor by replacing a subword according to one of
the rules.
The language defined by the grammar consists of all
words which can be derived from X and contain only
terminal symbols.

Example:

Applications:
• description of the syntax of natural languages
• precise definition of the syntax of programming

languages
• use of grammar-based derivations as an alternative

approach to problem-solving, particularly in Artificial
Intelligence applications (automated theorem proving,
decision-making, speech recognition, games...): rule-
based programming paradigm

11.4 L-Systems

L-systems = Lindenmayer systems
(after Aristid Lindenmayer, botanist)

special sort of grammars
designed for modelling the shape of organisms,
particularly plants

Differences to Chomsky grammars:
• no distinction between terminal and nonterminal

symbols
• only 1 symbol on the left-hand side of each rule
• all symbols for which a rule is applicable are replaced

in parallel
• additional component: an interpretation which

assigns a geometrical meaning to each generated
word.

Formally:

(Σ, X, R, I),

where Σ is a set of symbols, X ∈ Σ and R is a finite set of
rules of the form a → B
 where a is a symbol from Σ and B a word
 over the alphabet Σ
I is an interpretation mapping I : Σ* → R3 (from the set of
words into 3-dimensional space).

normally used for the interpretation:
"turtle geometry"
"Turtle": device for drawing or constructing lines or cylindrical
elements (virtual)
• stores (graphical and other) information
• has an internal "stack memory" (last in - first out)

• current state of the turtle contains information about current
line thickness, step length, colour to be used, further
properties of the object which will be constructed next

Turtle commands (selection):

F "Forward", including construction of an element

(line segment, internode of a plant...)
uses the current step length as the length of the new
segment

f forward without construction ("move" command)

L(x) change the current step length to x

L+(x) increment the current step length by x

L*(x) multiply the current step length by x

D(x), D+(x), D*(x) analogous for thickness
 (diameter of the next segment)

RU(45) Rotation of the turtle around the "up" axis by 45°

RL(...), RH(...) analogously around the "left" and
 "head" axis

 up-, left- and head axis form an orthonormal
system with positive orientation which is carried
by the turtle

+, – abbreviations for RU(ϕ) and RU(–ϕ) with fixed angle ϕ

Branching: Realized with "stack commands"

[put current state on the stack memory

] take the state from the memory which was
 just put there and make it the current state of the
 turtle (finishes a branch)

Example:

Rules

a → F [RU45 b] a,
b → F b

Start word a

(a and b are normally not interpreted geometrically.)

Further examples:

\angle 25.7,
F → F [+ F] F [– F] F

Result after 7 steps:

Branching, alternating orientation of branches and progressive
shortening (like in real plants):

* → F a,
a → L*0.5 [RU90 F] F RH180 a

Examples of real-world vegetation modelled with L-
systems:

spruce trees

Example mint (by Prusinkiewicz & Lindenmayer):

Beech twigs:

Development of flowering plants:

	Abstract notion: the Mealy automaton
	The language of all words of length n over (is denoted by (n. (0 = {(}.

