
11. Automata and languages, cellular automata, 
grammars, L-systems 
 
 

11.1 Automata and languages 
 
Automaton (pl. automata): in computer science, a simple 
model of a machine or of other systems. (→ a simpli-
fication of real machines or systems) 
 
Examples: 
Some systems to be modelled as automata with finite 
description 
 

 
 
 

 



Example 3:  A sugar-digesting bacterium 
 
Inputs: glucose (g), lactose (l), nothing (n) 
 
Outputs: lactase gene activated (a), lactase gene 
inactive (i)  – can be measured in the laboratory by 
methods from molecular genetics 
 
States: lactose-digesting (1), glucose-digesting (2), 
dormant (3) 
 
 
 
Abstract notion: the Mealy automaton 
 

 
 
(remember:   δ : Q × Σ → Q    means that the function δ  
associates to each pair  (q, s)  with q from Q,  s from Σ  
an element  δ(q, s) ∈ Q.  For λ analogously.) 
 



 
 

 



 
 
 
 
 
Formal languages: 
 

 



Definitions concerning words and formal languages: 
 
The length |w| of a word w is the number of its letters. 
The length of the empty word ε is 0. 
 
The language of all finite words over an alphabet Σ, 
including the empty word, is denoted by Σ*. 
    (In the example above: L2 = Σ2* .) 
 
The language of all non-empty words over Σ is denoted 
by Σ+.         Σ+ = Σ* – {ε}. 
 
The language of all words of length n over Σ is denoted 
by Σn.         Σ0 = {ε}. 
 
 
 

 
 

•  L+ is defined similar to L*, only the empty sequence of 
subwords is not allowed.  ε is in L+ only if it is already in L. 

 

 
 



The connection between automata and formal 
languages: 
 
How can we define a language using an automaton? 
 

First idea: collect all input sequences for which the 
corresponding output of the automaton ends with a 
special symbol "accept". 
 
→ Formal language definition by Mealy automata: 
 

 
 
 

 



We simplify the notion of automaton: 
The output is no longer necessary, only the states are used. 
 

→ notion of "finite automaton" (FA); also called 
"deterministic finite automaton" (DFA): 
 
A finite automaton is a quintuple 

 
 

 



 
 

 
 
FA can be used to check the correctness of statements in 
simple programming languages ("accept" = input was 
syntactically correct; "reject" = an error was detected). 
However, more complicated languages need other, more 
refined forms of automata. 
 
The languages for which a finite automaton exists  
form a special class of languages: 
 

 



Regular expressions over an alphabet Σ 
 
= a way to define "allowed" character sequences (or 
sequences of commands...), also used e.g. in search 
queries in databases or information systems 
– stand in connection with regular languages 
 
 
We give a recursive definition: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 



The connection to regular languages (i.e., to finite 
automata): 
 
Theorem: 
The languages which can be defined by regular 
expressions are exactly the regular languages. 
 

 
 
This justifies the word "regular" for languages definable 
by FA. 
 
Proof: by construction of FAs for each of the alternatives for the 
construction of regular expressions, and vice versa. 
 
 
 
Summary of this section: 
 

 
 
 
 



11.2  Cellular Automata 
 
What will happen if we connect several finite automata 
with each other? 
 
• A 2-dimensional Cellular Automaton (CA) is a 

rectangular (potentially infinite) array of cells. In each 
of the cells there is a finite automaton (→ each cell 
can adopt a finite number of states). 

• All the automata in the cells have the same 
functioning. 

• In each time step, each cell takes as input the states 
of all its neighbour cells and uses them to calculate 
its own new state (using a "transition function"). 

 

• The output of the CA is in each time step the pattern 
of the states of all the cells. 

 

 
 
Formally:  (G, Q, δ, c) 
G(i,j) : grid of cells with indices i, j 
Q : set of states 
δ : Qn+1 → Q   transition function (works in each cell) 
                       (n = size of the neighbourhood) 
c : G → Q       initial configuration 
 



 
 
1- dimensional, 3-dimensional ... CA can be defined 
analogously. Sometimes also triangular or hexagonal 
grids are used. 
 
An example of a 2-dimensional CA: 
Conway's "Game of Life" 
 

Only 2 states: 1 = "living", 0 = "dead". 
Neighbourhood: 8 cells (as above). 
Simple transition rule, counting only the number of living 
cells in the neighbourhood as input. 
 

Living cell, surrounded by 2 or 3 living cells → living 
Dead cell, surrounded by exactly 3 living cells → living 
in all other cases    → dead 



Expressed in other words: 

 
 
 

 
 
 
 
 



 
    this configuration is called a "glider". 
 
What else can happen in this simple "world"? 
 
Other example development: 

 
→ ends in a periodic pattern. 
 
 



"Glider gun" (dark) emitting "gliders" (brighter): 
 

 
 
Computer scientists have shown that the Game of Life can even 
simulate a computer with logical circuits (AND, OR, NOT - 
switches) – hence all what can be calculated can be calculated 
using the Game of Life! 
 
But: Game of Life rules do not reflect real-world properties 
→ no significance for real-world ecological modelling 
 
 

Using more states and other sets of transition rules, 
cellular automata can be designed to simulate real-world 
spatial patterns and dynamics. 
 
Examples: 
• spreading of forest fires 
• spreading of rabies disease in fox populations 
• colonisation of a habitat by a new species 
• formation of colour patterns on seashells 
• chemical reaction patterns 
• architecture... 



Example: CA simulating the spreading of an epidemic 
(University of Leipzig) 
 

 
 
 
Example: Architectural interpretation of a 3-dimensional 
CA (Robert J. Krawczyk, http://www.iit.edu/~krawczyk/rjkga03.pdf) 
 

 



Disadvantages of CA in simulation applications: 
 

• only discrete time steps 
• some directions in space are preferred (due to the 

underlying grid) 
• limited speed of interaction – no far-reaching, 

immediate effects possible 
 

 
 

11.3  Grammars 
 

Idea: Complex structures, e.g. the sentences of our 
natural language, can be described by simple rules. 
 

For example, many sentences have the form: 
Subject - predicate - object. 
 
Definition: 
A Chomsky grammar is a quadruplet 

(ΣN, ΣT, X, R), 
where ΣN and ΣT are disjunct sets of symbols, X ∈ ΣN 
and R is a finite set of rules of the form A → B  
   where A and B are words over the alphabet ΣN ∪ ΣT  
   and A contains at least one symbol from ΣN. 
(after Noam Chomsky, American linguist and philosopher) 
 

Symbols from ΣN are called nonterminal symbols, 
those from ΣT terminal symbols. 
X is the start symbol. 
 

A derivation of a grammar is a sequence of words, 
beginning with X, where each word is obtained from its 
predecessor by replacing a subword according to one of 
the rules. 
The language defined by the grammar consists of all 
words which can be derived from X and contain only 
terminal symbols. 



Example: 
 

 
 

Applications: 
• description of the syntax of natural languages 
• precise definition of the syntax of programming 

languages 
• use of grammar-based derivations as an alternative 

approach to problem-solving, particularly in Artificial 
Intelligence applications (automated theorem proving, 
decision-making, speech recognition, games...): rule-
based programming paradigm 



11.4  L-Systems 
 
L-systems = Lindenmayer systems 
(after Aristid Lindenmayer, botanist) 
 

special sort of grammars 
designed for modelling the shape of organisms, 
particularly plants 
 
Differences to Chomsky grammars: 
• no distinction between terminal and nonterminal 

symbols 
• only 1 symbol on the left-hand side of each rule 
• all symbols for which a rule is applicable are replaced 

in parallel 
• additional component: an interpretation which 

assigns a geometrical meaning to each generated 
word. 

 
Formally: 

(Σ, X, R, I), 
 

where Σ is a set of symbols, X ∈ Σ and R is a finite set of 
rules of the form a → B  
   where a is a symbol from Σ and B a word  
   over the alphabet Σ 
I is an interpretation mapping  I : Σ* → R3 (from the set of 
words into 3-dimensional space). 
 
normally used for the interpretation: 
"turtle geometry" 
"Turtle": device for drawing or constructing lines or cylindrical 
elements (virtual) 
• stores (graphical and other) information 
• has an internal "stack memory" (last in - first out) 



• current state of the turtle contains information about current 
line thickness, step length, colour to be used, further 
properties of the object which will be constructed next 

 
Turtle commands (selection): 
 
F  "Forward", including construction of an element  

(line segment, internode of a plant...) 
uses the current step length as the length of the new  
segment 

 

f  forward without construction ("move" command) 
 

L(x) change the current step length to x 
 

L+(x) increment the current step length by x 
 

L*(x) multiply the current step length by x 
 

D(x), D+(x), D*(x)  analogous for thickness 
                                               (diameter of the next segment) 
 
RU(45) Rotation of the turtle around the "up" axis by 45° 
 

RL(...), RH(...) analogously around the "left" and 
                                       "head" axis 
 

  up-, left- and head axis form an orthonormal 
system with positive orientation which is carried 
by the turtle 

 
+, – abbreviations for RU(ϕ) and RU(–ϕ) with fixed angle ϕ 
 
Branching: Realized with "stack commands" 
 
[  put current state on the stack memory 
 

]  take the state from the memory which was  
                just put there and make it the current state of the 
                turtle (finishes a branch) 
 



Example: 
 
Rules 
 
a → F [ RU45 b ] a, 
b → F b 
 
Start word   a 

 
 
(a and b are normally not interpreted geometrically.) 
 
 
 
 
 
 
 
 
 
 



Further examples: 
 

\angle 25.7, 
F → F [ + F ] F [ – F ] F 
 

Result after 7 steps: 
 
 

 
 



Branching, alternating orientation of branches and progressive 
shortening (like in real plants): 
 
* → F a, 
a → L*0.5 [ RU90 F ] F RH180 a 
 

 
 
Examples of real-world vegetation modelled with L-
systems:  
 

spruce trees 



 
Example mint (by Prusinkiewicz & Lindenmayer): 
 

 



Beech twigs: 
 

 
Development of flowering plants: 
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