11. Automata and languages, cellular automata, grammars, L-systems

11.1 Automata and languages

Automaton (pl. automata): in computer science, a simple model of a machine or of other systems. ((a simpli​fication of real machines or systems)
Examples:

Some systems to be modelled as automata with finite description

[image: image40.png]

[image: image2.png]Example 2: A cookie vending machine.

Inputs: a coin (c); buttons for choosing some sort of cookies (b1),
(b) or for wanting the money back (back).

Outputs: a coin back (c); and for giving out one of several kinds of
cookies (c1), (c2); an error signal (bell).

States: waiting (w); coin-accepted (c)

Example 3: A sugar-digesting bacterium

Inputs: glucose (g), lactose (l), nothing (n)

Outputs: lactase gene activated (a), lactase gene inactive (i) – can be measured in the laboratory by methods from molecular genetics

States: lactose-digesting (1), glucose-digesting (2), dormant (3)

Abstract notion: the Mealy automaton
[image: image3.png]What do the examples have in common?

Approach: A finite set of inputs, a finite set of outputs, and a finite
set of states. At any moment, the system is in one state.

Formally: Mealy automaton

A Mealy automaton is a tuple

(@, 4,6, q0)

where @ is a finite set (the set of states of the automaton), = is
the input alphabet, A is the output alphabet, 5 : Q x & — Q is
a transition function, X : Q x ¥ — A is an output function, and
qo € Qs the initial state.

(remember: (: Q (((Q means that the function (associates to each pair (q, s) with q from Q, s from (

an element ((q, s) (Q. For (analogously.)

[image: image4.png]Interpretation: () models the different states the system can be
in, and g is the state it starts in. = models the different inputs
on which the system can react, and A models the different ways
in which the system can react on an input. § models the change
of the state which can happen when an input event takes place: if
the system is in state ¢ and input o is entered in the system, the
system enters state 5(g, o). A models the reaction of the system:
If the system is in state ¢ when an input o is entered, the system
outputs A(g, o).

The set of outputs A might include a do-nothing action, which can
be used for combinations of states and inputs in which no output is
generated.

A Mealy automaton can be understood as a translator: each word
of letters from X is translated to a word of letters from A of the
same length.

[image: image5.png]Example for a Mealy automaton: The cookie vending machine from
above.

Model: ({w, c}, {c, b1, bo.back}, {c, ¢1. co, bell, nothing}, 5, A, w)

with 6 and X defined by the following table:

There must be a follower state and an output for each state/input
combination.

[image: image6.png]Graphical representation: Initial state marked an incoming arrow not
starting at a state. Each @ represented as a circle. § and X repre-
sented as arrows between circles, which are labeled with a pair of
form < /A. Each line in the tabular representation corresponds to
an arrow:

bibell
cle

b2ibell backic

Formal languages:

[image: image7.png]Formal language: (short: language) Set of words (=character se-
quences) over an alphabet = (=a finite set, interpreted as set of
characters)

Examples:

> ={a.b, ...z}, with language L1 = {one, two, three}

>5 = {0,1} with language L> = {e.0,1,00,01,10,11,000,...}
(L5 contains all sequences of 0's and 1’s of finite length, even the

empty sequence, denoted e, of length zero.

>3 = {0, 1} with language

= {w € X5|The number of 1's in w is positive and even}

Definitions concerning words and formal languages:

The length |w| of a word w is the number of its letters.

The length of the empty word (is 0.

The language of all finite words over an alphabet (, including the empty word, is denoted by (*.

 (In the example above: L2 = (2* .)

The language of all non-empty words over (is denoted by (+. (+ = (* – {(}.

The language of all words of length n over (is denoted by (n. (0 = {(}.

[image: image8.png]Operations on formal languages

Let L, Ly and L5 be languages over a common alphabet =. Then
we can define the following other languages over :

e L*is the set of words w over £ which can be split into a finite
number of sub-words wyws ... wy, such that each w; € L. The
empty sequence of words is allowed, i.e. e € L*.

· L+ is defined similar to L*, only the empty sequence of subwords is not allowed. (is in L+ only if it is already in L.

[image: image9.png]e Ly L is defined as the set of words w which can be split into
two sub-words w = wqws With wy € Ly Aws € Lo.

The connection between automata and formal languages:

How can we define a language using an automaton?

First idea: collect all input sequences for which the corresponding output of the automaton ends with a special symbol "accept".

(Formal language definition by Mealy automata:

[image: image10.png]Consider a Mealy automaton with A = {a,r} (for ‘accepted’ and
‘rejected’).

The language L(M) over the input alphabet = defined by a Mealy
automaton M consists of all words w & ¥* such that when w is
processed, the last output symbol is a.

[image: image11.png]Example:

A Mealy automaton which accepts L3 (words from {0, 1} with an
even and positive number of ones):

r

or

»

0ia
i

Problem: Languages which contain e can not be defined in this way.

We simplify the notion of automaton:

The output is no longer necessary, only the states are used.
(notion of "finite automaton" (FA); also called "deterministic finite automaton" (DFA):

A finite automaton is a quintuple

[image: image12.png](Q %, 5,90, F)

with @ a finite set (the states of the DFA), = the input alphabet,
: Q x ¥ — Q the transition function, qq the initial state and
F C Q the set of final states.

Difference to Mealy automata: There is no output alphabet and no
output function; but there is a set of final states.

A FA is an “acceptor”: Input words (i.e. elements of £*) which lead
the automaton from ¢ to an element of F are accepted by the au-
tomaton, other input words are rejected.

[image: image13.png]Extension of 4 to words: §
5:QxT —Q
with
°3(g.€) =gq
o for each word aw € 7T starting with some letter « € = and

continuing with word w:

(g, aw) = 5(5(g, a), w)

Language accepted of a FA M:
L(M) = {w € =*|5(qo. w) € F}

The set of languages which are accepted by some FA are denoted
as L.
fa

[image: image14.png]Example of a FA which recognizes all words over {0, 1} with an
even number of 1's:

({e, 0}, {0, 1}. 6, e, {e})
with ¢ defined by
5(q.0)

o
o

l
)
e|l
0
1

[image: image15.png]Graphical representation: No outputs; final states as double circles:

1

FA can be used to check the correctness of statements in simple programming languages ("accept" = input was syntactically correct; "reject" = an error was detected).

However, more complicated languages need other, more refined forms of automata.

The languages for which a finite automaton exists

form a special class of languages:

[image: image16.png]Regular languages

A language L is called regular if and only of there is a FA M with
L =L(M)

Regular expressions over an alphabet (
= a way to define "allowed" character sequences (or sequences of commands...), also used e.g. in search queries in databases or information systems

– stand in connection with regular languages

We give a recursive definition:

[image: image17.png]o Ifa X, then a is ar.e. (one-word/one-letter language)
o {}isare. (empty language)

o Ifrisare. then (r+) is a re. (repetition)

o Ifr and s are re., then (rs) is a r.e. (concatenation)

o Ifrand s are re., then (r|s) is a re. (alternative)

« No other expressions are r.e.

If parentheses are dropped: « binds tighter than concatenation, which binds tigh-
ter than |.

[image: image18.png]The language L(t) of a regular expression ¢

L(t) is defined in the following way:

o lft =afora e =, then L(t) = {a}.

o Ift={},then L(t) = {}.

o Ift = (r=) for somer.e. r, then L(t) = (L(r))*

o Ift = (rs) for somer.e.srand s, then L(t) = L(r)L(s).

o Ift = (r|s), for somere.s rand s, then L(t) = L(r) U L(s).

The languages which are definable by regular expressions are de-
noted by L.

[image: image19.png]Examples for regular expressions

All sequences of 0's and 1's: (01)=

All nonempty sequences of 0’s and 1's: (0[1) = (0|1)
feb {3+

Sequences of 0's and 1's with at least one pair of contiguous 1's:
(0]1) = 11(0|1)+

The language with the two words 000 and 111: 000/111
Sequences of 0's and 1" with an even number of 1's: (010 1) % 0x

Floating point numbers, using abbreviation Z for
(0[1/2/3/4/5/6|7/8]9):

=1+ 1)@ ZO{ (22 {Y = |[E{} + | +1-)Z22%)

The connection to regular languages (i.e., to finite automata):

Theorem:

The languages which can be defined by regular expressions are exactly the regular languages.

[image: image20.png]['fu = Lye

This justifies the word "regular" for languages definable by FA.

Proof: by construction of FAs for each of the alternatives for the construction of regular expressions, and vice versa.

Summary of this section:

[image: image21.png]Mealy automata: Some systems are adequately modeled by a finite
number of states, reacting in each state on one of a finite number of
inputs, by changing the state and emitting one of a finite number
of output symbols.

Formal languages: sets of finite words over a fixed alphabet.

Finite automata: Some formal languages are definable by automa-
ta. Special kind of automata, specifically for language definition: FA.

Regular expressions: An often more convenient way to define the
same languages.

11.2 Cellular Automata

What will happen if we connect several finite automata with each other?

· A 2-dimensional Cellular Automaton (CA) is a rectangular (potentially infinite) array of cells. In each of the cells there is a finite automaton ((each cell can adopt a finite number of states).

· All the automata in the cells have the same functioning.

· In each time step, each cell takes as input the states of all its neighbour cells and uses them to calculate its own new state (using a "transition function").

· The output of the CA is in each time step the pattern of the states of all the cells.

[image: image22.png]

Formally: (G, Q, (, c)

G(i,j) : grid of cells with indices i, j

Q : set of states

(: Qn+1 (Q transition function (works in each cell)

 (n = size of the neighbourhood)

c : G (Q initial configuration

[image: image23.png]ace (i)
spa

”}11(. »

1- dimensional, 3-dimensional ... CA can be defined analogously. Sometimes also triangular or hexagonal

grids are used.

An example of a 2-dimensional CA:

Conway's "Game of Life"

Only 2 states: 1 = "living", 0 = "dead".

Neighbourhood: 8 cells (as above).

Simple transition rule, counting only the number of living cells in the neighbourhood as input.

Living cell, surrounded by 2 or 3 living cells (living

Dead cell, surrounded by exactly 3 living cells (living

in all other cases (dead

Expressed in other words:

[image: image24.png]e The world is structured like an infinite chess board; on each
cell, there either is an individual, or there is no individual.

o The time proceeds in cycles (generations). In each generati-
on, some individuals die, others stay alive, and in some empty
cells, new individuals are born.

o The conditions for death and birth are: only the current state
of a cell and that of the neighbors are relevant for the state of
the cell in the next cycle.

[image: image25.png]The neighborhood consists of the eight surrounding cells.

— An individual stays alive if it has two or three living neighbors;
otherwise, the individual dies.

— In an empty cell, an individual is born if there were three living
neighbors during a cycle.

Example developments (environment is assumed to be empty)

Flip forth and back:
Il x| |

e et et
XXX -> |X| -> X[X|X -> ..
e et R

[1| Il

[image: image26.png]Steady state:

e

e

.

S+t

4ot

-+

|x]x] |x]x]
oo

|x]x]
oo

St >

|x]x]
St

|x]x]

S

|x]x]
St

Move to south-east in four steps:

Ix

Fr ==l Ixlxlx]
e

|x]x]
s

B

Bt o

B

[xIx] |

 this configuration is called a "glider".

What else can happen in this simple "world"?

Other example development:

[image: image27.png]

(ends in a periodic pattern.

"Glider gun" (dark) emitting "gliders" (brighter):

[image: image28.png]

Computer scientists have shown that the Game of Life can even simulate a computer with logical circuits (AND, OR, NOT - switches) – hence all what can be calculated can be calculated using the Game of Life!

But: Game of Life rules do not reflect real-world properties

(no significance for real-world ecological modelling

Using more states and other sets of transition rules,

cellular automata can be designed to simulate real-world spatial patterns and dynamics.

Examples:

· spreading of forest fires

· spreading of rabies disease in fox populations

· colonisation of a habitat by a new species

· formation of colour patterns on seashells

· chemical reaction patterns

· architecture...

Example: CA simulating the spreading of an epidemic (University of Leipzig)
[image: image29.png]

Example: Architectural interpretation of a 3-dimensional CA (Robert J. Krawczyk, http://www.iit.edu/~krawczyk/rjkga03.pdf)

[image: image30.png]

Disadvantages of CA in simulation applications:

· only discrete time steps

· some directions in space are preferred (due to the underlying grid)

· limited speed of interaction – no far-reaching, immediate effects possible

11.3 Grammars

Idea: Complex structures, e.g. the sentences of our natural language, can be described by simple rules.

For example, many sentences have the form:

Subject - predicate - object.

Definition:

A Chomsky grammar is a quadruplet

((N, (T, X, R),

where (N and (T are disjunct sets of symbols, X ((N and R is a finite set of rules of the form A (B

 where A and B are words over the alphabet (N ((T

 and A contains at least one symbol from (N.

(after Noam Chomsky, American linguist and philosopher)

Symbols from (N are called nonterminal symbols,

those from (T terminal symbols.

X is the start symbol.

A derivation of a grammar is a sequence of words, beginning with X, where each word is obtained from its predecessor by replacing a subword according to one of the rules.

The language defined by the grammar consists of all words which can be derived from X and contain only terminal symbols.

Example:

[image: image31.png]ZN = { S / P/ 0 }
ZT = { I\13r‘7, JoLy\ / ‘éakcs, fChlS, 'ﬂw, boo(c/
the newspaper the apple }

X = SPO
R=1{ S = My, S = Joh,
P - takes , P — re“lf,

0 - 'H“ L,(,L, O - a'-t navspaper , 0 ->(1«. a”/¢ }

A derivation :
S Po

Jdlam P O

Jélﬂn ‘£1L¢S O

Jobn takes the book € TF

(élﬂmiua(} Ou(-,)

Applications:

· description of the syntax of natural languages

· precise definition of the syntax of programming languages

· use of grammar-based derivations as an alternative approach to problem-solving, particularly in Artificial Intelligence applications (automated theorem proving, decision-making, speech recognition, games...): rule-based programming paradigm

11.4 L-Systems

L-systems = Lindenmayer systems

(after Aristid Lindenmayer, botanist)

special sort of grammars

designed for modelling the shape of organisms,

particularly plants

Differences to Chomsky grammars:

· no distinction between terminal and nonterminal symbols

· only 1 symbol on the left-hand side of each rule

· all symbols for which a rule is applicable are replaced in parallel

· additional component: an interpretation which assigns a geometrical meaning to each generated word.

Formally:

((, X, R, I),

where (is a set of symbols, X ((and R is a finite set of rules of the form a (B

 where a is a symbol from (and B a word

 over the alphabet (
I is an interpretation mapping I : (* (R3 (from the set of words into 3-dimensional space).

normally used for the interpretation:

"turtle geometry"

"Turtle": device for drawing or constructing lines or cylindrical elements (virtual)

· stores (graphical and other) information

· has an internal "stack memory" (last in - first out)

· current state of the turtle contains information about current line thickness, step length, colour to be used, further properties of the object which will be constructed next

Turtle commands (selection):

F

"Forward", including construction of an element

(line segment, internode of a plant...)

uses the current step length as the length of the new

segment

f

forward without construction ("move" command)

L(x)
change the current step length to x
L+(x)
increment the current step length by x
L*(x)
multiply the current step length by x
D(x), D+(x), D*(x)
analogous for thickness

 (diameter of the next segment)

RU(45)
Rotation of the turtle around the "up" axis by 45°

RL(...), RH(...)
analogously around the "left" and

 "head" axis

up-, left- and head axis form an orthonormal

system with positive orientation which is carried

by the turtle

+, –
abbreviations for RU(() and RU(–() with fixed angle (
Branching: Realized with "stack commands"

[

put current state on the stack memory

]

take the state from the memory which was

 just put there and make it the current state of the

 turtle (finishes a branch)

Example:

Rules

a (F [RU45 b] a,

b (F b
[image: image1.png]Example 1: Traffic lights, with a timer for stepping from state to state;
outputs switch on or off the different lamps.

Inputs: Timer (t)

Outputs: switch to red (red), switch to red and yellow (red-and-
yellow), switch to green (green), switch to yellow (yellow).

States: red, red-and-yellow, green, yellow

Start word a

(a and b are normally not interpreted geometrically.)

Further examples:

\angle 25.7,

F (F [+ F] F [– F] F

Result after 7 steps:

[image: image35.png]a — F[RU45b]a— F[RU4SFb]F[RU4Sb]a— ..

Branching, alternating orientation of branches and progressive shortening (like in real plants):

* (F a,

a (L*0.5 [RU90 F] F RH180 a
[image: image36.png]

[image: image37.png]

Examples of real-world vegetation modelled with L-systems:

spruce trees

[image: image38.png]

Example mint (by Prusinkiewicz & Lindenmayer):

[image: image32.png]

Beech twigs:

	[image: image33.png]

	[image: image34.png]

[image: image39.png]

Development of flowering plants:

