9. Databases

Motivation:

Computers are often used

- for dealing with large amounts of data
- and in situations where **data integrity** is important for the survival of an organization.

Examples:

- Banking
- e-commerce (commercial transactions via WWW e.g., amazon.com Or ebay.com)
- meteorological measurements
- booking systems (trains, airlines...)
- ERP systems (Enterprise resource planning)
- telecommunication (phone numbers, fax numbers, mobile phone data...)

Main problems:

- How can large amounts of data be organized so that they can be accessed quickly?
- How can data be organized so that hardware and software failures do not lead to a desaster?
- How can data be changed by several agents in parallel without interference?

Today these problems are being dealt with on the conceptual basis of **relational database management systems** (RDBMS), typically using some dialect of **SQL** (structured query language) as notation for definition and manipulation of data.

In these slides: Only very basic concepts are discussed.

Introduction using an example

Simplistic example: public library. Data organized in tables.

- table "Users" with columns UserID, Name, Address, BirthDate
- table "Books" with columns BookID, Title, Author, Keywords
- table "BorrowedBooks" with columns UserID, BookID, BorrowedSince, BorrowedUntil

Principles of database tables

- Relational databases hold the data in (typically several) tables.
- Each row represents one record.
- The number and meanings of the columns of a table is (more or less) fixed.
- The number of **rows** of a table is **variable**.

"Entity relationship model":

- Each table describes one kind of **entities** or a **relation** (typically between several entities)
- a model of a certain part of reality based on the concepts of entities and their relationships is called an entity-relationship model.

In our example: tables "Books", "Users" represent entities, table "BorrowedBooks" represents a relation between these entities.

Attributes, key candidates and keys

Columns in a table are called **attributes**. Some attributes or attribute combinations **characterize** entities. Such attributes or attribute combinations are **key candidates**. One of the key candidates is designated as **primary key**. The primary key of an entity is used in order to refer to it from other entities or from relations.

In our example, UserID is used as primary key in the "Users" table, and BookID is used as primary key in the "Books" table. These attributes are used in "BorrowedBooks" in order to refer to the related entities.

Data definition and data manipulation with SQL

Two kinds of languages for working with relational data bases are distinguished:

data definition language (DDL)

data manipulation language (DML)

DDL and DML are today typically combined in dialects of SQL (structured query language) and supported by producers of database management systems. The different dialects are based on similar principles. We will give examples. **Data definition** consists in the definition of the structure or tables and their interrelations.

During data definition, it must be defined for each table:

- which attributes it contains,
- how each attribute is to be represented (a data type must be chosen),
- which attributes form the primary key of the table, and
- which attributes refer as keys to other tables.

A notation which allows to define tables in this way is called a **data definition language** (DDL).

Data manipulation consists in adding, changing and deleting table rows and in the selection of data from the data base.

A DDL only alows to describe the structure of a data base, not to change its content in any way.

A notation which allows to manipulate tables is called a **data manipulation language** (DML).

Data definition

The "Users" table from the public library example could be defined like this:

```
CREATE TABLE Users (
UserID INT(10) NOT NULL,
Name CHAR(100),
Address CHAR(100),
Birthdate DATE,
PRIMARY KEY (UserID)
)
```

This instruction creates a table names "Users" with the four already described columns. UserID is represented a ten-digit decimal number, Name and Address are represented as 100 characters, Birthdate as a date, and UserID is the primary key of the table.

For UserID, a value must be given for each row in the table – for the other three columns, a standard value (NULL) might be used in order to designate that the value of the attribute is not known.

The table "Books" might be defined similarly, only the attribute Keywords presents problems. Which amount of memory should we reserve for the keywords of a book if we do not want to restrict the number of keywords beforehand?

One solution consists in the definition of an extra table "Keywords":

```
CREATE TABLE Keywords (
BookID INT(10),
Keyword CHAR(100)
)
```

Key words have a maximal length of 100 characters, but the number of key words which can be given for a book is not restricted, since the same book can occur any number of times in the table. The "Books" table could be declared like this:

```
CREATE TABLE Books (
BookID INT(10) NOT NULL,
Title CHAR(100),
Author CHAR(100),
PRIMARY KEY (BookID)
)
```

The table representing currently borrowed books might be declared like this:

```
CREATE TABLE BorrowedBooks (
UserID INT(10),
BookID INT(10),
BorrowedSince DATE,
BorrowedUntil DATE
)
```

Data manipulation

The following operations can be used to manipulate the data in the tables:

- The SELECT command selects information from the data base.
- The INSERT command inserts rows into a table.
- The UPDATE command changes the content of existing rows in a table.
- The **DELETE** command removes rows from a table.

SELECT

The list of overdue books can be determined as follows:

```
SELECT b.BookID, b.Author, b.Title, l.BorrowedSince
FROM Books AS b, BorrowedBooks AS l
WHERE b.BookID = l.BookID
AND l.BorrowedUntil < TODAY
```

This statement is also called a **query** (the data base system is queried for some data).

This query returns a **table with four columns**. Each row represents an overdue book; the first column contains the book id, the second the author, the third the book title, and the last column the date when the book was borrowed.

A query has the following form:

- After the keyword FROM, the tables are listed from which data is to be collected. We use all combinations of rows from "Books" and "BorrowedBooks", and we abbreviate "Books" as "b" and "BorrowedBooks" as "I" elsewhere in the query.
- The WHERE keyword defines a filter: only those combination of rows from the FROM clause are kept which fulfill the condition given behind the WHERE: The book ids of the two entries must match, and the date until which the book must be given back must lie in the past.
- The SELECT keyword introduces a list of expressions which are evaluated for each row combination filtered out by the WHERE. In the example, these are simply some of the attributes.

Tasks: (a) Change the query so that in addition to the overdue book, the result also contains the person who has borrowed the book? (b) Which query determines which books have to be given back in the next two weeks? Assume that from addition of a date and a number, a date results which lies the given number of days after the given date.

INSERT

When a book is borrowed, a row has to be added to table BorrowedBooks. The following instruction adds a row with UserID 1053465, 43565 as BookID, TODAY as BorrowedSince and TODAY+14 as BorrowedUntil. The order of the arguments is the same as the order of the columns in the table declaration.

INSERT INTO BorrowedBooks VALUES (1053465, 43565, TODAY, TODAY+14)

The general form is the following: After the keywords INSERT INTO and the name of the table, the keyword VALUES starts a list of values representing the row to be inserted.

UPDATE

In order to lengthen the borrowing time of the book with id 43565 by a week, the following command could be executed:

```
UPDATE BorrowedBooks
SET BorrowedUntil = BorrowedUntil + 7
WHERE BookID = 43565
```

After UPDATE, the name of the table to be changed is given. The WHERE predicate defines which rows are affected by the change, and after SET it is defined which columns in the rows to be changed are updated, and to which value.

DELETE

When a book is brough back by a used, its entry has to be taken out of the "BorrowedBooks" table:

DELETE FROM BorrowedBooks WHERE BookID = 43565

Further elements of the SQL language

Above we have only seen the most elementary SQL language elements. Many SQL dialects present many more features. Examples:

- Integrity constraints can be used in order to define conditions on the content of a database which shall never be violated during manipulations.
- Foreign key relations are used in order to make explicit that values in a column are keys of some other table. They are a special case of integrity constraints.
- Index declarations are used in order to accelerate searching in tables.
- **Stored procedures** are used in order to store instructions which are to be executed by the database.
- Further **table operations**: *set union*, *set difference*, *set intersection*, *grouping* of results, *sorting* of results.
- **Views** allow to shield the users of a database from the internal representation of the data.
- **Database administration** consists in deciding how tables etc. are represented and which users get which kind of access to the database.
- **Invariants** and **triggers** are language elements which ensure the fulfillment of integrity constraints independently of the application programme.
- **Transactions** are language elements which ensure that a sequence of changes is either executed *completely* or *not at all*, even in the case of hardware or software failures.

Conceptual database design

The **conceptual design** of a relational database often proceeds according to the following steps:

- First the **entities** relevant in the application area are collected and their types are determined. (Example: books, users)
- Then the relevant relationships between entities are determined. (Example: BorrowedBooks)
- For each entity type and each relationship type, the **attributes** and their data types are determined.
- Finally, integrity conditions for the database are specified. (Example: BorrowedUntil must not be earlier than Borrowed-Since)

On the basis of this design it is decided how entities, relationships, attributes are represented in a specific database management system.

Normalization:

Redundant data in a data base might lead to **inefficiencies** and **inconsistencies**: Updates of redundantly held information have to be performed at several locations instead of at only one, and if this is forgotten, an inconsistency results.

Normalisation of a database consists in the reduction of redundancies, typically via splitting tables.

Architecture of database applications

Database applications often use a *three-layer* architecture:

- A DBMS operates as the kernel of the system. It ensures data persistency, data integrity etc.
- An application layer provides application-specific functionality. In our example, it would provide the functions "borrow a book", "lengthen borrowing time", "register new user" etc.
- A **presentation layer** defines the user interface, which today is often graphical, and not seldom with an alternative using the WWW.

These three components might run as **three different programs** on different computers: A **web-browser** runs the presentation layer, the web-server dispatches the user input to an **application program**, and the application program accesses a **relational database** on a dedicated database server.

Geographical Information Systems

What is a Geographical Information System (GIS)?

• Software, hardware and data to help manipulate, analyse and present information that is tied to *spatial locations* (usually geographical locations).

Estimates are that 80 % of all data stored worldwide has a *spatial* component (Source: www.gis.com).

A GIS contains a classical database, but extends its functionality by methods adapted to spatial information.

Particularly, a GIS provides...

- special forms of *query*, designed to extract information with spatial properties from a database (e.g., taking neighbourhoods into account)
- special forms of data analysis (e.g., geostatistics)
- special forms of *integrity checking* adapted to spatial data.

What can a GIS do?

Proximity analysis

Database "Not Easy to Interpret"

	0 of	51 selected		A 19	5										
Attribut	es of States	cshp												1	Ð
Store	Ano	State name	State to	Sub regio	State able	Flag 1997	Flaga79987	Part and	Howeelast	Moler	Fienders	Heliote	Blad	Anni an	A
Palugan !	67286.878	Washington	53	Pacific	WA I	4866632	5604260	72	1872431	2413747	2452945	4309937	149901	81483	2
Palaan	147236.028	Montana	30	Min	MT	799065	888723	5	306163	395769	403296	741111	2381	47879	m
Polygon	32161.664	Maine	23	N Eng	ME	1227928	1244828	38	465312	587850	630078	1208360	5138	5898	1
Palvaon	70810.153	North Diakota	39	WNCen	ND	639900	644782	9	240878	318201	320599	604142	3524	25917	-
Polygon	77193.624	South Dakota	46	W N Can	SD 1	696004	736549	9	259034	342498	353506	637515	3258	50575	
Palvaon	97799.492	Wyoming	56	Min	WY	453588	484529	5	169839	227007	226581	427061	3606	9479	
Polygon	56088.066	Wisconsin	155	E N Cen	W	4891769	51 89399	87	1822118	2392935	2498834	4512523	244539	39387	
Folgen	83340.995	Idaho	15	Mits	ID	1008749	1210815	12	350723	300995	505753	990451	3370	13780	
Palyaon	9683.219	Vernorit	50	N Eng	VT I	562759	591659	59	210650	275492	297296	555099	1951	1696	<u> </u>
Palvan	84517.465	Minnesole	127	W NDm	MN	4375089	4690847	52	1647853	2145183	2229916	4130335	54944	49909	
Polygon	37070.740	Dream	41	Pacific	ON	2042221	3245423	20	1100010	1207073	1445240	2000707	40170	20430	
Polygon	9259.514	New Herroshie	133	N Eng	NH	1109252	1171443	120	d11186	543544	565708	1037433	7198	2134	-
Polygon	56257,220	lowa	19	WNCen	IA	2776720	2859263	49	1064325	1344802	1431953	2683090	48090	7349	
Palugan	8172.4B2	Massachusette	25	N Eng	MA	6016425	6106984	736	2247110	2998745	3127690	5405374	300130	12241	C i
Palanan	77328 337	Nebrados	131	W N Den	NE	1578385	1650613	20	502353	759439	316946	1490558	57408	12410	
Polygon	49560 579	New York	136	Mid Atl	the state	17990455	19177296	320	6639322	9625673	9364792	13995255	2959065	62651	6
Palanan	(5159.239	Percentraria	1 42	Mid Ad	P6	11881643	12051902	262	4495966	5694265	6187378	10520201	1069795	14733	Ĩ
Polygon	4975.434	Engraphicul	109	N Eng	CT	3287116	3277113	551	1230479	1592873	1694243	2859353	274269	6654	
Daluzzan i	1044.950	Disorte Island	04	NEco	DI	1002464	990170	900	377977	401490	521920	917375	20001	4071	
Palanan	7507.302	New Janey	134	Mid All	NI I	7730188	8018326	1030	2794711	3735685	3994503	E130455	1036825	14920	13
Polygon	36199.515	Indiana	18	E N Cen	IN	5544159	5074944	152	2065355	2688281	2955828	5020200	430000	12220	
Polynon	110657 293	Mexeda	192	kin	NY	1201833	1652983	-11	d66297	611880	509953	1012695	78771	19637	
Polyton	P4920105	l liste	100	i kito	107	1772950	2024167	20	627372	SEK7ER	967061	1615245	11575	24392	
Delugae	157774 107	Daliferasia	00	Decilio	CA	20700021	20197302	100	10301200	14007037	1/0022004	20524222	2200901	242124	20
Palatan	11192 862	Dhin	139	E N Can	OH I	10847115	11202691	363	4087546	5225340	5520775	9521255	1154926	20358	
Polygon I	FC 207 954	linein	17	E N Cas	100	11//20602	11000010	200	4202240	55520010	5020210	0952970	109/020	21830	
Daharan	66.665	Nation of Columbia		S AL	182	255255	635635	3492	0.20	363575	22993	15623	2450	1466	
Polygon	2054 505	Delaware	110	S AN	DE	600000	771119	224	747497	21296.2	242200	575000	11 1460	2019	
Delugari j	2034.308	March Viewinia		C AI	100	1703477	1020022	74	C00557	001530	901041	1705500	FC205	2413	
Palanan	9739 753	Manland	124	IS AN	IMD 1	4781469	5100839	491	1749991	2318671	2462797	3393984	1169999	12972	1
Deluger	104000 100	Palarada	100	Line .	00	2104204	2005015		1000400	10010071	1003000	2005474	100140	02220	1
Palar	104033.108	Kanta alua	1 04	E S C	100	2010/2002	CI BObac	32	1202483	1705245	19000004	23/04/4	123146	6700	
Delegen	#0310.177	Kennacky K	1 20	DUCKE-	IN1	2627624	333000000	30	0/0702	121703533	1300001	2121000	142075	21.000	
Palugan	20010104	Virginia	51	CAL	WA .	C1070E0	2562933	166	22010201	2022074	2152204	4701700	1102024	15202	-
ruggin	500131134	Yigina .	191	LO HI	INE I	010/008	0123830	100	1001000	5033314	3103,364	4701730	F 40300	10282	
rolygon	63031.624	Missouri	23	W N Lan	MU	511/0/3	5387753	73	1361205	2464315	2002/58	4905226	546206	13835	
rolygon	110/11.522	Algone	1.40	1000	AC	Distant.	4520060	T.	100000	1010001	1054537	CTOOT LOU	110509	201027	
rolygon	/0002,392	Uklahoma	40	W 5 Den	OK	3145585	3018622	45	1206135	1530619	1614766	2583512	233801	252420	
ruygan ;	+3046.913	Num Carolina	1.47	15.91	I NIL	66,36637 ;	(411239	1.50 ;	2017026	3214290	5419.547	SUU8491	1408.523	80130	1

One of the main advantages of GIS over classical geographical maps:

Data For GIS Applications

Digitized and Scanned Maps purchased, donated, free (Internet)

- created by user
- Data Bases Tables of data
- GPS Global Positioning System
 accurate locations
- Field Sampling of Attributes
 Remote Sensing & Aerial Photography

Further advantage: Easy interaction, visualization, manipulation of maps

Raster – Grid - "pixels" - a location and value - Satellite images and aerial photos are already in this format Vector – Linear - Points, lines & polygons - "Features" (house, lake, etc.) - Attributes - size, type, length, etc.

The vector representation is more appropriate for senseful queries (and is more exact) – basis for relational database representation of geographical data

Typical *entities* of a GIS:

- Points
- *Tics* (= special points for which the exact real-world coordinates are known, used to fit a digital map into a global coordinate system)
- *Lines*, also called *arcs* (more precisely: Multilines, i.e. consisting of several linear segments)

- *Polygons* (closed multilines, possibly with additional attributes)
- Annotations (text objects associated with points).

The endpoints of a line (and possible branching points) are called *nodes*.

Intermediate points (without branching) are called vertices.

Tables in the underlying relational database:

- Tic table
- boundary table (represents the spatial extent of the map – a surrounding rectangle)
- arc attribute table (AAT)
- polygon attribute table (PAT).

E.g., a *polygon* is represented as a line in the PAT, with attributes: polygon ID, nodes, arcs, a label point (in the interior), further attributes (e.g., area, slope, population density...). Details differ between different GIS.

Usually, a GIS does not only contain information for a single map of a region, but *several sorts of information for the same region*:

each sort of information is represented in an extra *coverage* (also called *layer*, *cover* or *theme*).

Example: Different coverages of a town area:

How to combine several coverages?

• Overlay operation

From two geometries, the GIS calculates the coarsest common geometry:

Attention: The following geometry

be a common geometry of *a* and *b*, but not the coarsest one!

Using overlay, a GIS can give answer to questions like:

"What forest areas of district x are within 100 m distance to a road, are stocked with conifers and have a slope < 5 degrees?" (e.g., for a chalking action)

Layers used for this task:

- landuse map (\rightarrow forests)
- political district map (\rightarrow district *x*)
- road map (\rightarrow 100 m neighbourhood to a road)
- forest type map (\rightarrow stocked with conifers)
- digital elevation model (\rightarrow slope < 5 degrees)

Selection of polygons of the overlay using an "and" operation

Further functionality of GIS: 3D visualization

Representing Attribute Data in 3-D: Population Density in Small Census Areas in the London Borough of Hackney

Widely used GIS products:

- ESRI ArcView, ArcGIS (licenced commercial software)
- FreeGIS (open source, www.freegis.org)