8. Basic algorithmic strategies

8.1
8.2
8.3
8.4
8.5

Self-referential problems: Recursion
Search problems: Backtracking
Simulation: Monte-Carlo method
Graph algorithms

Image processing

8.1 Self-referential problems: Recursion

recursive function: calls itself, see "factorial" example in the

Java chapter

recursive definition: the notion to be defined appears in the
definition (but with some sort of simplification), see definition of
the semantics of a propositional formula

recursive solution of problems: sometimes possible if the
problem involves some self-reference
— careful analysis of the problem necessary!

Example: The "Tower of Hanoi" game

Three pegs; two of them empty (B and C); one (A) with a tower of n
disks of decreasing sizes.

A B C

Goal configuration: Pegs A and B empty, all disks on C with decrea-

sing sizes.

A move: consists of the transfer of the topmost disk from some peg

to another peg.

Restriction: A larger disk may never be put on a smaller disk.

Solution strategy:

To transfer a tower of n disks from any peg X to another peg Y, using
a third peg Z for help, do the following:

1. If n = 0, nothing is to be done.
2. It n = 1, just move the single disk from X to Y.
3. Otherwise, 1.e. if n > 1, do the following in sequence:

3.1 Transfer the tower of the n — 1 topmost disks from X to Z, using
Y as help peqg.

3.2 Move the bottom disk of the original n-disk tower, now lying on
top on peg X, from peg X to peg Y.

3.3 Move the tower of n — 1 disks from peg Z to peg Y, using X as
help peaq.

Recursive part: in steps 3.1 and 3.3 !

How do we make plausible that this strategy solves the pro-
blem?

To be shown: that in the process, a larger disk is never put on top of
a smaller one.

Proof. Assuming that steps 3.1 and 3.3 work, 3.2 is the only possibly
problematic step. But all disks smaller than the one moved in 3.2 are
on the help-peg. QED

The solution seems to use a “trick”™: |1t somehow seems to use itself!
This is called RECURSION. Why or in which cases is this allowed?

Three principles are necessary for this to be allowed:
1. Each problem has a “size”; sizes are ordered, and the set of sizes
is “well-founded”, i.e. for each size, there is only a finite number of

smaller sizes.

2. For all cases which are small enough, the algorithm does NOT
“use itself”.

3. For inputs for which the algorithm “uses itself”, the problem to be
dealt with in the self-use is “smaller” than the input problem.

Are the three principles for the Tower-of-Hanoi problem fulfilled?

1. “Size”: natural numbers, the height of the tower to be moved. We
will use the letter n for the problem size.

2. Non-recursive cases: Problems with sizes n = 0and n = 1
can be solved without recursive invocation.

3. Recursive cases: An input problem of size n (withn = 1)is
reduced to a partial problem of size n — 1.

Another recursive algorithm: “Quick sort”. Three principles:
1. Size: length of array to be sorted.
2. Non-recursive cases: lengths 0 and 1.

3. Recursive cases: length n > 1, reduced to two problems of
same kind, with sizes

—n — 1 and 0 (worst case), or

— two problems of (approximately) the same size of (approximately)
(n—1)/2

Strategy for application of recursion in general:

1. Reduce the original version of the problem to a finite number
of smaller problems.

2. Solve the smaller problems recursively. This results in some
partial solutions.

3. Put together the partial solutions to the full solution of the ori-
ginal problem.

4. Check that the recursion-principles are fulfilled; especially:
ensure that recursive calls are always done with smaller problem
sizes.

8.2 Search problems: Backtracking

Fundamental idea:

If you look for something in an unknown environment,
first go somewhere. If that what you are looking for is not
there, go back and try it in another location.

(Always keep book about what places you have already
inspected!)

Example: Mastering a maze

Given data and problem: A maze of unknown size on a grid with
quadratic cells. Sometimes, there is a wall between two cells, and
sometimes, the way is open. Given two positions in the maze, is
there a way from one to the other?

Strategy: Mark all cells reachable from the first position given. If
during the marking process, the second position given is reached,
stop and output “yes”. If not, output “no”.

More specific search algorithm

Each cell will either (1) be unmarked, or (2) carry one of the marks
“n, e, s, w, visited”.

— For n, e, s, w, this denotes the direction which has been used the
last time the cell has been left,

— "visited” means that all directions have been tried.

Start with current position at pos1, then repeat the following until the
process stops:

1. If the current position is posZ, output “yes”™ and stop.

2. If the current position is pos1 and all reachable neighbors are
marked, output “no” and stop.

3. Check if there is a reachable unmarked neighbor in some direc-
tiond < {n,e s, w},

3.1 If yes, mark current cell with 4 and move current cell to that
neighbor.

3.2 If no, mark the current cell as “visited” and go back to the
cell from which the current cell has been entered for the first
time. This is the only reachable cell in a direction d which is
marked with —d. (—d is just the opposite direction of d).

In the picture, four situations of the algorithm are shown.

The star marks the currently visited cell.
"Wv" = visited

pos1

pos1

pos2

pos2

pos1

pos1

| B pos2

= = = = = L]

B pos2

What happens if the search process reaches a dead end?

In this case, step 3.2 is taken repeatedly, going back the way in

which the cell was reached before, until either
(1) a position with an untried direction is reached, or
(2) pos1 is reached.

This process is called backtracking: a general principle of different
algorithms based on searching.

Conditions for backtracking are:

e The search space consists of a finite set of situations, and for
each situation, there is a subset of neighbouring situations.

e |n each situation, it is clear which of the neighbouring situations
have already been visited, and from which of them the current
situation has been entered for the first time.

If these conditions are fulfilled, a search strategy like for the grid can
be used.

Another example of a problem solvable by backtracking:
Given: A positive integer n and a finite list L. of positive integers.

Problem: Is there a set S of list elements of L. such that the sum of
the elements of S is n?

(Similar problem: Cutting a large board without rest into some smal-
ler boards of given lengths.)

Situations are represented by lists of strictly increasing indices
into L, starting with the empty list. Each such list represents the
subset of selected elements of L.

If the sum of these elements is larger than n, we have run into a
dead end: we do not have to check extensions of the list.

Backtracking means in this case: Shorten the index list and try
another extension not yet tried out.

The next extension to be tried is the one where the last index in the
current list is incremented by one.

If there is no such next index, we have also run into a dead end,
and the next index for the next-to-last element is tried out.

Example: n = 10, L = [6,5, 3,5, 3, 2]

Start with empty sequence. Next is sequence 14 (indices give the
associated values).

1s
1625 (too long)
1633
153345 (too long)
163353
153365 (no alternative for last index: update next-to-last)
1s4s
1653
1536>
1665 (no alternative for last index: update next-to-last)
25
2533
253345 (too long)
253353
253362 — solved!

Backtracking as search in a tree (depth-first search)
— Each node represents an index sequence.

— Search stops as soon as the sum is too large.

empty

|

L 2mmmm - 3--m-m-- 4---5-6
\ \ | |
e e Pomcooos ArccBeB Demooons 4---5-6 4---5-6 5-5 6
| | | | | | |
3mmm - 4---5-6 4---5-6 5-6 6 4---5-6 5-6 6 5-6 6 6

| | o | | L |

4---5-6 5-6 6 5-66 & 5-66 6 6

| o | |

5-6 6 6 6 6

|

6

8.3 Simulation of discrete events: The Monte-Carlo
method

In natural processes, often a very large number of
objects or agents is involved.

Examples:

sand particles in a sandstorm

individual fishes in a maritime ecosystem

cars in traffic flow

light particles (photons) in an optical system
speculators at the stock exchange ...

If these processes are to be simulated, it makes often
sense to follow the fates of a much lower number of
randomly selected representatives.

If the distribution of their parameters is the same (or
similar) to that of the total set of objects or agents,
conclusions can be drawn to the outcome of the

process.
Because random parameters are involved: name "Monte-Carlo
method" after the famous casino.

Example: Simulation of light interception and reflection in

a virtual forest stand
- generate representative photons with random initial position
and follow them through the stand ("photon-tracing").

Attention:

initial distribution of position in the sky (solar positions)
and direction (inclusion of diffuse radiation?) should be
realistic

— not a trivial task
(but more a question of astronomy, geography and meteorology than
computer science)

Technical question: How to generate random positions
or directions?

More simple version of this problem:

Problem: Simulate the throw of a dice. How can this be done in a
computer?

Typical way: Pseudo-random numbers, or: random number gene-
rators (RNG)

— An algorithm which, after having been initialized with a “seed”
(start number), produces a list of »n-bit integers in which no pattern
can be recognized.

— There is no true “randomness”: started with the same seed, the
algorithm always produces the same sequence.

— After at most 2" elements, the sequence enters a cycle.

A well-tested RNG is the one based on the following formula:

rir1 = (r; * 16807) mod 2147483647

In systems with 32-bit integers, this formula cannot be used directly
because the intermediate value 2147483646 = 16807 can occur
in the computation.

Access functions of RNGs

An RNG typically contains at least two access functions:

e One access function is used for setting the seed.

e Another access function is used for getting the next number
from the sequence.

e Often, random floating-point numbers between 0 and 1 are
needed. This can be had by a floating-point division of the cur-
rent number by 2. Many libraries provide an access function
which yields this value.

e Sometimes, further access functions are provided, e.qg. for dif-
ferent representations of floating-point numbers.

in Java: see http://ww. cs. geneseo. edu/ ~bal dwi n/ r ef er ence/ random ht ni .

Problems to look out for when using RNGs

The main problem is: What does it mean that “no pattern can be
recognized”?

This can not be checked - there is no complete list of possible
patterns!

Example: the lower bits are often “less random” than the higher bits.

Consequence: For getting a random sequence of bits, do not use
just “mod 2" on the number sequence!

Designing random-number generators is a “black art”. Never use
home-growns.

8.4 Graph algorithms

What is a graph in computer science?

— a structure consisting of nodes and arcs which connect
some of these nodes

More precisely:
Finite directed graph: (V' £}, with:

— V7: Finite set of vertices, and
— E CV x V:finite set of edges

Mathematical model for a finite number of elements, with directed
connections between them.

Examples for real-world structures representable by graphs

1. Topology of a town; V': Places in a town; (a,b) € E iff there is a
direct connection between places a and b.

2. Direct connections in railway network; V': Railway stations;
(a.b) € E iff there is a train going directly from station a to stati-
on b.

3. Acquaintances; V: Humans; (a, b) € E iff person a knows person
b.

4. Parents; V': Humans; (a, b) € E iff person a is a parent of person
b

5. Food web; V: animal species, (a,b) € Eiff aeats b

6. Gene regulation network; V: genes and enzymes,
E: activation / inhibition relations between them.

Graph-Related Concepts
An edge of the form (a, a) is called a cycle.

A graph is non-directed if ¥(a,b) € E : (b,a) € E. Otherwise the
graph is directed.

A clique of agraph (V. E)isasetC C Vst abe(C = (a.b) €
E.

A follower of a vertex a is a vertex b s.t. (a.b) € E.
A precursor of a vertex a is a vertex b s.t. (b,a) € F.
An incident edge of a vertex a is an edge of the form (b, a).

Two vertices a and b are called adjacent iff (a.b) € Ev (b.a) € E.

A finite path in a graph (V.) is a finite sequence vg, vy, ..., vn Of
vertices s.t.

A path is called proper if it contains more than one vertex.

An acyclic graph is a graph such that there is no vertex a for which
a proper path exists starting in @« and ending in a.

A graph is connected if for all a,b € V', there is a path from a to b
or a path from & to a.

A vertex b is reachable from a vertex « if there is a path in the graph
starting in @ and ending in b.

Special forms of graphs:

Linear Lists

A linear list is a (special) graph with the following properties:

Each vertex has at most one precursor,

each vertex has at most one follower,

there is exactly one vertex with no precursor, and

there is exactly one vertex with no follower, and

for different vertices v and +/, there is exactly one path, either
from v to +" or from v’ to v.

O——p0—2>0—30— ... —30

Linear lists are important data structures.

Senseful operations for lists:

append an element (at the end of the list)
remove an element (from the end)

insert an element

delete an element (from an arbitrary position)
concatenate two lists

count the number of elements

revert the order of the elements

Trees

A tree is an acyclic graph such that
¢ there is at most one path from each element to another, and
¢ there is exactly one vertex without a precursor (the root).

Vertices in a tree without followers are called leaves of the tree.

Trees in computer science are normally drawn with the root at the
top, spreading down.

A binary tree is a tree in which each vertex has at most two follo-
Wers.

N

Trees are also important data structures.
Examples:

- decision trees (make a decision in each interior node!)
- space partitioning trees

- phylogenetic trees

- hierachical clustering of data (according to similarity)

- hierarchy of directories and files

Computer Representation of Finite Graphs

Two often used ways: memory-block representation, or adjacency
matrix (we look into this in more detail)

Memory-block representation: vertices as blocks of memory; ed-
ges as memory addresses in the memory block of the pre-node of
the edge.

1000; {some data) 500: {some data) —

1080: 250 520: 1000
1084: 500 524: 2000

250: {some data) 2000: {some data)
260: 250

264 500

Representing Finite Graphs in an Adjacency Matrix

Elements of V' are numbered through from O to |V | — 1. We denote
the vertex with number 7 by v;.

The adjacency matrix M is a boolean square matrix with |V| x |V
elements, in which M (i, j) (row ¢, column j) is true iff (v;,v;) € E.

=

l i

ORI

M-
m—=T-
I s
M T — T

Reachability Problem

Let (V. E') be a graph. How do you check if vertex v; is reachable
from vertex v;?

Idea: we construct, from A7, another Boolean matrix N in which
M==(i,j) represents that there is a path from v; to v;. This would
solve the reachability problem.

We use the Warshall algorithm:

Step 1: We define a special type of matrix multiplication for quadra-
tic Boolean matrices. Let 7 and @ be quadratic Boolean matrices of
the same size n. Then P x @ is defined by

(PxQ)(@3) =\ (P3G k) AQ(k)

0<k<n

(Disjunction for addition, conjunction for multiplication)

Verify that the following holds:

o If P(i, k) represents if there is a path of up to = edges from v;
to vy, and

e if Q(k.7) represents if there is a path of up to y edges from v,
to v,
‘ji‘!

e then (P < Q)(i.7) represents if there is a path with up to x 4y
from v; to v;.

Step 2: Define N (i, j)as M (i, j) vi=j.

Verify that N (i, j) represents if there is a path of up to one edge
from v; to v;.

Step 3: Repeat NV := N x N until the value does not change any
more.

Verify that after n repetitions, N (i, j) represents that there is a path
with up to 2" edges from v; to v; (use induction).

Verify that after a finite number of steps (logarithmic in the number
of vertices), the value stops changing.

Step 4: In the result of step 3, N (i, j) represents that there is a path
from v; to v;.

Verify this.
Weighted Graphs and the Shortest Path Problem

Weighted graphs: A graph (V. E') with a function w : & — R which
assigns a weight to each edge.

Weights of a graph can be used, for example, to model distances
between vertices.

Now, each path can be assigned a weight. The sum of the weights
of its edges.

Representation of weighted graphs: with the weights in the array
instead of just Boolean values.

Shortest Path Problem

Given: The distance matrix of a weighted graph, i.e. a matrix A in
which M (%, j) represents the weight of the edge between v; and v;.
If there is no edge from v; to v, the value is ~c.

Wanted: A matrix N in which N(z, 7) represents the length of the
shortest path between v; and v;.

Algorithm: Similar to Warshall's:

e Define P x @ for quadratic matrices with n rows via

(P =xQ)i,j) = min.ji_'l.'ﬁ_-_f_”P(f. k) 4+ Q(k, 5)

e Define N(i,j)as M (i,) fori = 7, and as 0 otherwise.

e lterate N := N x N until the value does not change any more.

Verify this algorithm! Use steps as for Warshall's.

8.5 Image processing

Images in computer graphics:

usually large rectangular matrices

of grey values (integers) or colour specifications (con-
sisting usually of 3 integer values).

Basic tasks in the processing of images by computers:

removal of "noise", smoothening

edge detection

segmentation (to distinguish objects from background
and from each other)

feature extraction (e.g., size of objects)

classification and pattern recognition

Simple algorithm for smoothening a (greyscale) image:
Calculate the mean value for a block of pixels, use this
value as the new grey value for the central pixel

iterate this for all pixels

“momom i ————]

-

I

X0 Efxy) Xo A(x,y)

mathematically: "convolution" of the image matrix with a

(small) matrix of weights

original image

convoluted images

|
|
1
|
|
|
|

1
1
1
1
1
1
1

|
|
|
|
|
|
|

1
1
1
1
1
1
1

1
1
1
1
1
1
1

These are examples of linear filters.

Better suited for removal of erroneous pixels ("noise") is
a nonlinear filter, the median filter:

First sort the entries in a window, then take the middle

value as the new pixel value. lterate this for all positions.

5

4

5

5

5

10

3

4

5

10

Application of the median filter (window lengths 3, 5, 7):

original images |

Edge detection:
where is a large difference between neighbour pixels?

Use linear filters again:
Roberts filter

| 0 0 1
h, = h, =
0 -1 - -1 0

"edge image": add the absolute values of the results of
the convolutions with both matrices

hi ho edge image

other edge detection filter:
Sobel filter

e

Ly

I
1
I =~ =

L—

| —
-2

-3 L
I = —

L

—

[

Il
1
I | I
— — —
— — L
| ——

Next steps:

thinning the edges

closing them to make contours

approximation of contours by line segments or spline
curves

— segmentation by contours

Alternative: Region-based segmentation

Region growing (floodfill algorithm):

set a start pixel in the interior of the region

inspect all neighbour pixels if they have the same (or
a very similar) colour

if so, mark them as belonging to the region

continue until no neighbour pixels remain

do the same for other regions

Feature extraction
Typical features of regions / objects in images:

area A

longest diameter

circumference ¢

form factor (c°/4nA) —is 1 for a circle
center of gravity

average grey value ...

Pattern recognition

Simple method:
using the statistical parameter "correlation coefficient"

Z; (:rf _E)(J’} —-¥)
JO G =D (3 - P))

insert for x; the pixel grey values of the picture and for y;
those of the pattern

Example: Search for the pattern "6" in an image

7 @6

6 6
q 7

1 4

given image correlation coeff. clusters of corr.coeff.
and given pattern for all possible positions
(upper left corner) of the pattern

Problem:
The calculation of all the correlation coefficients costs
much time

- make first segmentation of the picture to distinguish the
characters from the background, then restrict search to
the positions of the characters

- use other measures of similarity ...

	Feature extraction
	Pattern recognition

