
6.  Fundamentals of programming 
 
 
From a problem to the solution 
 
First considerations when for a problem a programme 
shall be designed: 
 
WHAT – HOW – WITH WHAT  
 
 
WHAT (which goal) shall 
HOW (with what means) and 
WITH WHAT (with which instruments) be achieved? 
 
 
 
WHAT:  problem specification 
 

functional specification: 
• input / output and their interrelation, 
• formal-mathematical and informal description 

 
specification of requirements: 
• ways of usage 
• usage rights 
• duration of use 
• security requirements 
• financial context 

etc. 
 
HOW: 
 

• algorithm 
• structure of programme 



WITH WHAT: 
 

• hardware (computer, periphery, other technical 
equipment) 

• software (operating system, programming language, 
development toolkit, programme libraries, ...) 

 
 
 
 
 
14 steps from the problem to a solution: 
 
1. Problem 
2. Mathematical formulation 
3.  Finding an algorithm A which solves the problem 
4.  Formulating A 
5. Precise formulation of A 
6.  Proof of adequatness of A 
7. Coarse programming 
8. Choice of programming language and computer 
9. Fine programming 
10. Programme verification 
11. Test of the programme 
12. Calculation 
13. (possibly) generalisations 
14. (possibly) implementation as subprogramme or as 
        part of a programme library 
 
 
 
 
 
 



A simple example: 
 
1. Problem: 
In a gear mechanism, the driving cogwheel shall move 
two other cogwheels, one with a cogs (e.g., a = 105) and 
one with b cogs (e.g., b = 147). A full turn of each of the 
driven wheels shall correspond to one or several full 
turns of the driving wheel, and the gear ratios should be 
as small as possible. How many cogs must the driving 
wheel have? 
 
2. Mathematical formulation 
 

Let d be the number which we 
are looking for. Then, 
obviously, the following must 
be fulfilled: 
 
d divides a and d divides b. 
Because the gear ratios shall 
be as small as possible,  d 
must be maximum, thus d =  
greatest common divisor of a 
and b ( gcd(a, b) ). 

 
3. Finding an algorithm which solves the problem: 
 

Euclid of Alexandria (around 325 B.C., "Elements", book 7, 
problem 1, proposition 2); probably already found by Eudoxos 
of Knidos around 375 B.C.: 

"Euclid's Algorithm" 
147 : 105 → 1 rest 42 
105 : 42   → 2 rest 21 
42 : 21     → 2 rest 0 
gcd(105; 147) = 21 



 
4. Formulating the algorithm: 
 

I.    If a ≠ b, let x be the greater and y the smaller one of the 
       numbers a, b; 
       in the case  a = b  let  x = a = y. 
II.  Calculate  x/y  with rest. 
III. If there is no rest, we have y = gcd(a, b). 
IV. If there is a rest r, replace x by y and y by r and go to II. 
 
 

5. Precise formulation of this algorithm: 
 

Let a, b be positive integers and without loss of generality 
b ≤ a,   
furthermore   x0 = a, x1 = b    and    xn–1 = qnxn + xn+1   
with  qn, xn+1 ∈ {0; 1; 2; ...}  
and xn+1 < |xn| for  n > 0    and xn ≠ 0.  
Let n be the first index with xn+1 = 0.  Then xn = gcd(a, b). 
 
 

6. Proof of adequatness of the algorithm 
 

First to show: The algorithm specified above terminates, i.e. 
there is always an integer n such that  xn+1 = 0. 
This holds because of  xn+1 < xn and xn+1 ≥ 0: There exist only 
finitely many integers between xn and 0, hence only finitely 
many steps. 
 

Furthermore, we have 
xn  divides   qnxn + 0 = xn–1 
xn  divides   qn–1xn–1 + xn = xn–2 
xn  divides   qn–2xn–2 + xn-1 = xn–3 
... 
using the "complete induction principle", we can conclude: 
xn  divides   q2x2 + x3        = x1 = b 
xn  divides   q1x1 + x2        = x0 = a 



hence xn divides the integers a and b and thus also gcd(a, b). 
 

On the other hand, the gcd is a divisor of x0 and x1 and 
according to the above chain of equations also of   x2, x3, ..., 
xn–1,  xn. 
 

Hence   xn = gcd(a, b), and this was to be proved ("q.e.d." = 
"quod erat demonstrandum"). 
 
 
7. Coarse programming: 
 
Several methods and principles possible. Examples: 
 

(a) Flowchart 
 

Flow of programme written top-down and from left to 
right, if not specified otherwise by arrows. 
 
First try: 
 

 



 
However, Euclid's Algorithm works also in the case  b ≤ a, 
thus a simplification is possible, yielding: 
 

 
 
 
(b) Structogramme (Nassi-Shneidermann Diagramme), 
      corresponding to the second flowchart: 
 

 



 
8. Choice of programming language and computer: 
 

C on Intel-PC under MS-Windows 
 
 
9.  Fine programming: 
 
#include <stdio.h> 
int main() 
   { 
   char inbuf[50]; 
   int x, y, r; 
   printf("\nTwo input numbers, please: "); 
   gets(inbuf); 
   sscanf(inbuf, "%d %d", &x, &y); 
   while (y>0) 
      { 
      r = x % y; 
      x = y; 
      y = r; 
      } 
   printf("\nResult: %d\n", x); 
   return 0; 
   } 
 
 
10. Programme verification: 
 

Checking the programme for correctness, i.e., if it does 
in every situation the right thing 
- we must follow all manipulations of variables 
Means: Assertions which must be fulfilled 
 
Verification assertions 
- after line 8: x, y positive integers (if correctly read!) 
- after line 11:  x = qy+r,  q≥0,  r ∈ {0; 1; ...; y–1} 
- after line 12:  x = y 



- after line 13:  y = r 
- after line 14:  y = 0 
one has to check that these assertions remain fulfilled in each possible 
programme execution 
 
 
 
11. Test of the programme 
 

Tests using examples of number pairs with known result; 
try to do this in a way that all possible, qualitatively 
different situations are covered. 
Particularly check all extreme cases (for example, 
something is = 0). 
 

Examples: 
30 40 
100 100 
0 100 
100 0 
100 1 
 
 
 
12. Calculation 
 

Input   105  147   →  Output  21, 
the driving wheel must have  21 cogs. 
 
 
 
 
 
13. Possible generalisations, e.g., the gcd of arbitrary 
integers (up to now, we have only considered positive 
integers): 
 



 
 
 

14. Possible implementation as a subprogramme 
(function in C): 
 
int gcd(int x, int y) 
   { 
   int r; 
   while (y > 0) 
      { 
    r = x % y; 
    x = y; 
    y = r; 
      } 
   return x; 
   } 
 

this can be used in a larger programme   –   e.g.,  
to calculate iteratively the gcd of more than 2 integers. 
 

Possible call:   z = gcd(p, q); 
                              .... 
 
 



Simple Java programmes 
 

 
  /*  ...  */  : comment (skipped by the compiler). 
  Alternative syntax for comments: 
  // ....             (the whole line is skipped) 
 
 
Terminology: 
 

A class is a collection of data, together with appropriate 
operations on them. 
In our example, HelloWorld, there is no data and only 
one operation,  main. 
 

A method is the definition of an operation, i.e., of some-
thing which can be done. Can be invoked by some 
(other) programme, or by the user.  
In our example, the operation  main  prints a string on 
the screen. 



Readability of programmes by humans 
 
programmes: have to be executed by computers, but 
also to be understood by humans 
 

Executability can be checked automatically, 
understandability not! 
 
⇒ Recommendations: 
 

• make frequent use of programme comments              
( /* ... */ or    // ...   in Java) 

 

• use plenty of newlines and blanks 
 

• put braces { ... } in lines of their own, put matching 
braces in same horizontal position: 

{ 
 .... 

} 
 

• indentation makes containment and nesting of 
programme components visible 

 

• avoid long lines, insert line breaks for readability 
 

• avoid very long methods 
 

• use "speaking" variable and function names 
    (int iteration_counter  is better than  int x127 !) 

 

• do not use variable names twice for different 
purposes, even if the language allows it 

 

• Initialise constants, default values etc. at the 
beginning of a source code file, not somewhere 
"deep in the code" where you don't find them later on 

 

• adhere to conventions used by competent 
programmers! 



Essentials of Java 
 

 
 

 



 
 
How to compile and run our example programme: 
 
we use the JDK (Java Development Kit) 
– containing command-line oriented tools for compiling 
and interpreting Java programmes. (The user gives 
commands to the computer as lines of text, the computer 
answers with lines of text.) 
 
Needed for invoking the JDK: A shell, i.e., a programme 
which accepts lines of text from the user and outputs 
lines of text from programmes on the screen. Example: 
the "MS-DOS prompt" shell in MS-Windows. 
 
 
 
The source code file name of the programme must be 
the same as the class name, with the file name 
extension  .java   appended. 
 
⇒ our example programme must be placed in a file 
called  HelloWorld.java . 



 
 
 

 
 
 
 
 
 
 
 
 
 



Use of simple data types and the "while" loop 
 

 
 

 



Assignments 
 
in our example: 
i  =  0; 
the variable named  i  gets the new value 0 
• fundamental operation in the von Neumann 

programming paradigm 
 
effect: content of a place in the memory is changed 
 

 
Attention: 
i  =  0   in a Java programme does not have the 
same meaning as in a mathematical formula! 
E.g., i = i+1  would mathematically be a contradiction 
(it would imply 0 = 1)  
– but makes sense in a programme (increment i by 1). 
Mathematical meaning of this assignment: 

inew = iold + 1. 
 
In assignments, the order is relevant: 
x1 = x2;     has another effect as   x2 = x1; 
 
To underline the asymmetry, other languages (e.g., 
Pascal) use  :=   instead of  =  for assignments 
 
Comparison (checking for equality) is expressed in Java 
by  = = 
 
Java offers further assignment operators besides = : 
a += b      //  add content of b to the content of a 
–=, *=, /=  etc. analogously. 
 
 



Data types: 
 
describe sets of values and the operations which can be 
performed on them. 
 

Example: integers, with arithmetical operations (+, –, *, /, %) 
and comparisons (<, <=, >, >=, ...). 
 
 
 
In the example programme: 
String[], int, String, PrintStream. 
 

 
 



 
 
 
 

 
 
 
 
 



Ranges of declarations, visibility 
 

 
 
 
 
Literals 
 

 
 
 \uXXXX  (XXXX: up to four hexadecimal digits):  
 The number of a Unicode character 
 
 



 
 
 
Primitive Java data types: 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 



 
 

 
 
 
 
 
 
 



Java operators 
 

 

 
 

("assoc" = order of association, i.e., evalutation from left (L) or right (R) 
when several operators of the same level occur in the same expression) 
 
 
 
 



Functional abstraction, self-defined methods 
 

 
 
 
 

 
 
 



Example: compute the factorial of an integer 
"factorial":  n! = n * (n–1) * ... * 3 * 2 * 1. 
 

 
 
 

 
 
 



 
 
 
 
 

 
 
 
 
 
 
 



 
 
 
Method call: 
e.g.  x = max(a, b); 
Effects: 
• control flow jumps from the place where the method 

is called to the place where the method is defined 
• the method is executed 
• the control flow jumps back to the place where the 

method was called and the return value is assigned 
to x. 

 
 
 
 
 
 



Control structures of Java 
 
control structures: 
language concepts designed to control the flow of 
operations 
– typical for the von Neumann paradigm 
 
particularly:  branching of the programme; loops. 
 
Variants of branching: 
 

 
 
(if the condition is false, nothing happens) 
 
 
 
 
if (<condition>) 
   { 
      <Code for fulfilled condition> 
   } 
else 
   { 
      <Code for unfulfilled condition> 
   } 
 
 
 
Nesting of   if...else   possible: 
 
 



 
 
 
 
 
Example application: Finding the solutions of a quadratic 
equation ("pq-formula") 
 

 
 



Alternative:  switch construction 
Branching not binary, but with several alternatives at the 
same level 
 

 
 

Example application: 
 

 



Special form of branching for error handling: 
the try construction 
 
 

 
 



Example application: 
 

 
 

 
 
 
 
 
 
 



Loops: 
we have already used the while loop. 
Second variant: "do ... while" 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



The  for  loop 
 

 
 
 
 
Application example: 
 

 
 
 


	From a problem to the solution
	"Euclid's Algorithm"
	4. Formulating the algorithm:
	Verification assertions


