6. Fundamentals of programming

From a problem to the solution

First considerations when for a problem a programme shall be designed:

WHAT – HOW – WITH WHAT

WHAT (which goal) shall

HOW (with what means) and

WITH WHAT (with which instruments) be achieved?

WHAT: problem specification

functional specification:

· input / output and their interrelation,

· formal-mathematical and informal description

specification of requirements:

· ways of usage

· usage rights

· duration of use

· security requirements

· financial context

etc.

HOW:

· algorithm

· structure of programme

WITH WHAT:

· hardware (computer, periphery, other technical equipment)

· software (operating system, programming language, development toolkit, programme libraries, ...)

14 steps from the problem to a solution:

1.
Problem

2.
Mathematical formulation

3.
Finding an algorithm A which solves the problem

4.
Formulating A
5.
Precise formulation of A
6.
Proof of adequatness of A
7.
Coarse programming

8.
Choice of programming language and computer

9.
Fine programming

10.
Programme verification

11.
Test of the programme

12.
Calculation

13.
(possibly) generalisations

14.
(possibly) implementation as subprogramme or as

 part of a programme library

A simple example:

1.
Problem:

In a gear mechanism, the driving cogwheel shall move two other cogwheels, one with a cogs (e.g., a = 105) and one with b cogs (e.g., b = 147). A full turn of each of the driven wheels shall correspond to one or several full turns of the driving wheel, and the gear ratios should be as small as possible. How many cogs must the driving wheel have?

2. Mathematical formulation

	[image: image1.png]

	Let d be the number which we are looking for. Then, obviously, the following must be fulfilled:

d divides a and d divides b.

Because the gear ratios shall be as small as possible, d must be maximum, thus d = greatest common divisor of a and b (gcd(a, b)).

3. Finding an algorithm which solves the problem:

Euclid of Alexandria (around 325 B.C., "Elements", book 7, problem 1, proposition 2); probably already found by Eudoxos of Knidos around 375 B.C.:

"Euclid's Algorithm"

147 : 105 (1 rest 42

105 : 42 (2 rest 21

42 : 21 (2 rest 0
gcd(105; 147) = 21
4. Formulating the algorithm:

I. If a (b, let x be the greater and y the smaller one of the

 numbers a, b;

 in the case a = b let x = a = y.

II. Calculate x/y with rest.

III. If there is no rest, we have y = gcd(a, b).

IV. If there is a rest r, replace x by y and y by r and go to II.

5. Precise formulation of this algorithm:

Let a, b be positive integers and without loss of generality

b (a,

furthermore x0 = a, x1 = b and xn–1 = qnxn + xn+1

with qn, xn+1 ({0; 1; 2; ...}

and xn+1 < |xn| for n > 0 and xn (0.

Let n be the first index with xn+1 = 0. Then xn = gcd(a, b).

6. Proof of adequatness of the algorithm

First to show: The algorithm specified above terminates, i.e. there is always an integer n such that xn+1 = 0.

This holds because of xn+1 < xn and xn+1 (0: There exist only finitely many integers between xn and 0, hence only finitely many steps.

Furthermore, we have

xn divides qnxn + 0 = xn–1
xn divides qn–1xn–1 + xn = xn–2
xn divides qn–2xn–2 + xn-1 = xn–3
...

using the "complete induction principle", we can conclude:

xn divides q2x2 + x3 = x1 = b
xn divides q1x1 + x2 = x0 = a
hence xn divides the integers a and b and thus also gcd(a, b).

On the other hand, the gcd is a divisor of x0 and x1 and according to the above chain of equations also of x2, x3, ..., xn–1, xn.

Hence xn = gcd(a, b), and this was to be proved ("q.e.d." = "quod erat demonstrandum").

7. Coarse programming:

Several methods and principles possible. Examples:

(a) Flowchart

Flow of programme written top-down and from left to right, if not specified otherwise by arrows.

First try:

[image: image2.png]Calculate rest r
of division x/y

However, Euclid's Algorithm works also in the case b (a, thus a simplification is possible, yielding:

[image: image3.png]Calculale

rest v of

x/y,
X=Y,y=r

(b) Structogramme (Nassi-Shneidermann Diagramme),

 corresponding to the second flowchart:
[image: image4.png]while (y o)

8. Choice of programming language and computer:

C on Intel-PC under MS-Windows

9. Fine programming:

#include <stdio.h>

int main()

 {

 char inbuf[50];

 int x, y, r;

 printf("\nTwo input numbers, please: ");

 gets(inbuf);

 sscanf(inbuf, "%d %d", &x, &y);

 while (y>0)

 {

 r = x % y;

 x = y;

 y = r;

 }

 printf("\nResult: %d\n", x);

 return 0;

 }

10. Programme verification:

Checking the programme for correctness, i.e., if it does in every situation the right thing

- we must follow all manipulations of variables

Means: Assertions which must be fulfilled

Verification assertions

- after line 8: x, y positive integers (if correctly read!)

- after line 11: x = qy+r, q(0, r ({0; 1; ...; y–1}

- after line 12: x = y
- after line 13: y = r
- after line 14: y = 0

one has to check that these assertions remain fulfilled in each possible programme execution

11. Test of the programme

Tests using examples of number pairs with known result; try to do this in a way that all possible, qualitatively different situations are covered.

Particularly check all extreme cases (for example, something is = 0).

Examples:

30 40

100 100

0 100

100 0

100 1

12. Calculation

Input 105 147 (Output 21,

the driving wheel must have 21 cogs.

13. Possible generalisations, e.g., the gcd of arbitrary integers (up to now, we have only considered positive integers):

[image: image5.png]

14. Possible implementation as a subprogramme

(function in C):

int gcd(int x, int y)

 {

 int r;

 while (y > 0)

 {

 r = x % y;

 x = y;

 y = r;

 }

 return x;

 }

this can be used in a larger programme – e.g.,

to calculate iteratively the gcd of more than 2 integers.

Possible call: z = gcd(p, q);

Simple Java programmes

[image: image6.png]// B simple demonstration pro
ss Hello

public cla

i

/*
* We need only one method.
*/
public static void main(String[] args)
{
System.out.println("Hello World!");
!
!

A class HelloWorld is declared. It contains a single method main,
which does not return a value (void), and which is passed an ar-
ray of strings (String[1), which can be accessed by the identifier
args. Method execution leads to the text “Hello World!” (without
quotes) being printed on the screen.

 /* ... */ : comment (skipped by the compiler).

 Alternative syntax for comments:

 // (the whole line is skipped)

Terminology:

A class is a collection of data, together with appropriate operations on them.

In our example, HelloWorld, there is no data and only one operation, main.

A method is the definition of an operation, i.e., of some​thing which can be done. Can be invoked by some (other) programme, or by the user.

In our example, the operation main prints a string on the screen.

Readability of programmes by humans

programmes: have to be executed by computers, but also to be understood by humans
Executability can be checked automatically, understandability not!

(Recommendations:

· make frequent use of programme comments (/* ... */ or // ... in Java)

· use plenty of newlines and blanks

· put braces { ... } in lines of their own, put matching braces in same horizontal position:

{

}

· indentation makes containment and nesting of programme components visible

· avoid long lines, insert line breaks for readability

· avoid very long methods

· use "speaking" variable and function names

 (int iteration_counter is better than int x127 !)

· do not use variable names twice for different purposes, even if the language allows it

· Initialise constants, default values etc. at the beginning of a source code file, not somewhere "deep in the code" where you don't find them later on

· adhere to conventions used by competent programmers!

Essentials of Java

[image: image7.png]Basic components

Comments, spaces, newline: For human readability, and for separa-
ting words (just like in normal written language).

Special symbols: To denote different kinds of groupings, to termi-
nate commands, to construct paths etc.

Examples: Braces {, }; parentheses (,) ; brackets [,]; dot; double-
quotes "'; semicolon

Literal values: character sequences representing a value directly,
like a digit sequence for a number, or a character sequence in dou-
ble quotes for a string.

Example: "Hello World!"

Sequences of letters or digits, starting with a letter: different cate-
gories: 1) Keywords, 2) predefined identifiers, 3) newly declared
identifiers.

[image: image8.png]1) Keywords: Are fixed in the language proper, can not be given a
new meaning

Examples: public, class, static, void

2) Predeclared identifiers: Meaning fixed by a declaration in the
context, often can be “overwritten”, i.e. given a new meaning. Ex-
amples:

string: data type for character sequences

tem: contains different objects for access to the environment

out: predefined in System; data stream to the computer screen

println: predefined method in System. out; invoked with a string
it puts the characters of the string to System.out, then outputs an
additional line break

Dot notation: used for access to components of an object.

[image: image9.png]3) Newly declared identifiers: Meaning fixed by declarations in the
current program.

Examples:

HelloWorld: defined as a new class.

main: defined as the name of a new method in class HelloWorld.

args: defined as the name of the additional data with which main
is invoked. Must be an array of strings.

How to compile and run our example programme:

we use the JDK (Java Development Kit)

– containing command-line oriented tools for compiling and interpreting Java programmes. (The user gives commands to the computer as lines of text, the computer answers with lines of text.)

Needed for invoking the JDK: A shell, i.e., a programme which accepts lines of text from the user and outputs lines of text from programmes on the screen. Example: the "MS-DOS prompt" shell in MS-Windows.

The source code file name of the programme must be the same as the class name, with the file name extension .java appended.

(our example programme must be placed in a file called HelloWorld.java .

[image: image10.png]Tools

Text editor. A special program which allows to enter texts into the
computer and store them somehow under some name as a se-
quence of characters, called text file.

The text file has to be compiled by a compiler. The JDK compiler is
called javac.

The command line javac HelloWorld.java invokes the com-
piler with the name of the java file. Output: Error messages
to the screen; a class-file to the store. Name of class file:
HelloWorld.class.

Class file is executed by an interpreter. The JDK interpreter is cal-
led java.

[image: image11.png]The command line java HelloWorld invokes the main me-
thod of the class HelloWorld which is found in the file
HelloWo

ld.class.

When run, the output of our example program is the text
orld! and a line break.

Use of simple data types and the "while" loop

[image: image12.png]// B simple demonstration program, printing out the
// numb from 0 to 10 and their
// on a line by
public cl Hello

i

uar

, each pair

/* We need only

id main(Stringl] args)

i

while (i <= 10)

tem.out.println(i +
i+1;

£ o(i*i));

[image: image13.png]While loop

while starts a loop: A sequence of commands which, under some
condition, are executed repeatedly.

First, the condition given in parentheses is checked. Result must
be boolean. Our example: Comparison of the current value of i (0)
with 10.

0<10 is true: Thus, the body of the loop is executed: Pair of values
0 and 0*0 are printed, and 1 is incremented by one.

Then, execution continues with the check of the condition, and the
loop is repeated until 1 has value 11, such thati <= 10 becomes
false.

Then, the loop body is not repeated again, and the main method
finishes.

Assignments

in our example:

i = 0;

the variable named i gets the new value 0

· fundamental operation in the von Neumann programming paradigm

effect: content of a place in the memory is changed

Attention:

i = 0 in a Java programme does not have the same meaning as in a mathematical formula!

E.g., i = i+1 would mathematically be a contradiction

(it would imply 0 = 1)

– but makes sense in a programme (increment i by 1).

Mathematical meaning of this assignment:

inew = iold + 1.

In assignments, the order is relevant:

x1 = x2; has another effect as x2 = x1;
To underline the asymmetry, other languages (e.g., Pascal) use := instead of = for assignments

Comparison (checking for equality) is expressed in Java by = =
Java offers further assignment operators besides = :

a += b // add content of b to the content of a
–=, *=, /= etc. analogously.

Data types:

describe sets of values and the operations which can be performed on them.

Example: integers, with arithmetical operations (+, –, *, /, %) and comparisons (<, <=, >, >=, ...).

In the example programme:

String[], int, String, PrintStream.

[image: image14.png]1.string[], an array of strings, i.e. of character sequences. The
type of the parameter args of method main.

Parameters of a method: Are known in the method body by their
name. Here: args.

Interpreter java: is invoked with space-delimited “arguments”. First
argument: The class to be interpreted. Other arguments: are given
to the main-method of the class in args.

Example: java HelloWorldl one two three four
leads to the method HelloWorldl.main being invoked, with, for
args, the value {"one", "two", "three", "four"}.

[image: image15.png]2. int, type of 32-bit two’s-complement integers. The variable i
used for running through the argument list.

Variable i starts with value 0 and is incremented in the loop until it
has value 11.

3. srrmg &ype of character sequences, the type of the expressi-
on args[i], given as argument to the println-call, evaluates to
an elemem of the args array.

4. PrintStream, type of connections to some output,
m. out is a predefined value. On program start, the interpre-
ter connects this character based output stream with the computer
screen.

[image: image16.png]Code fragment for computing the sum of an integer array

// Compute, in (result), the sum of elements of
int result = 0;

i

(int[] p).

int i =

while (i<p.length)

{

result =

result + plil;
i=d 41

Ranges of declarations, visibility

[image: image17.png]Example: int i introduced variable i which was known in all of
main, starting from the point of declaration.

Visibility of a variable: is delimited by the closing brace of the range
in which it is declared. In the same range, the same identifier can
not be reused.

{
int 1i;
// -- i’ is visible here --
{
int j;
// -- "i’ and "j’ are visible here --
}

- i’ is still visible, 'j’ not any more --

Literals

[image: image18.png]Literals denote values directly
String literals: Strings in quotes
Used character code for the string content: 16-bit Unicode

Special characters in strings: \: is used to introduce something “spe-
cial”. Examples:

 \uXXXX (XXXX: up to four hexadecimal digits):

 The number of a Unicode character
[image: image19.png]\n: a line break; \t: a tabulator; \xxx, xxx a three-digit n octal
number: The character with the given octal code.

Number literals: Signed digit sequence for integer types; for
float types: decimal point and “E’-Notation. Examples: +3453;

3.141592653; 1.17E-6

Primitive Java data types:

[image: image20.png]primitive data type defaults size (bits) min/max

boolean false 1 na/na.

Unicode characters:

char \u000o 16 \u0000/\uFFFF

Two’s complement integers:

byte 0 8 -128/127

short 0 16 -32768/32767

int 0 32 -2147483648/2147483647

long 0 64 -9223372036854775808/
9223372036854775807

|EEE 754 floating-point numbers:

(min/max are those of absolute values)

float 0.0 32
double 0.0 64

1.4023985E-45/3.40282347E+38
4.94065645841246544E-324/
1.79769313486231570E+308

void: quasi-type for methods which return no value

[image: image21.png]Non-primitive Java data types: Arrays and objects

Arrays: collections of elements of the same type, accessed by
number (from 0). Example declarations of integer arrays:

int[] p = {1,3,2,10};

int[] g = new int([5];

int[] r;

Values after these declarations:

p points to a memory block of four integers, with values 1, 3, 2 and
10.

g points to a memory block of five integers, all values 0.

r does not point anywhere (it has the special value null). This
can be changed by the allocation of a block of memory via the Java
operation new:

r = new int[1000];

Now, r points to a memory block of 1000 integers, all 0.

T =p;

Now, r points to the same memory block as p.

[image: image22.png]Array declarations and operations
Non-allocating declaration: int [1 a_empty;

Allocated with room for 10 elements:
int[] a_ten = new int[10];

Initialized array: int [1 lockup = {1,2,4,8,16,32,64,128};

Multiple dimensions: boolean[] [1 bw_:
new boolean[1024] [768];

Non-rectangular: int [] [] pascal_triangle =
{{ar {1} {1.2,1},{1,3,3,1},{1,4,6,4,1},{1,5,10,10,5,1} };

Array access: by integer-index in brackets. Start at 0. Array-access
is checked (index may not be negative or too large)

Number of elements of array a: a.length

[image: image23.png]Objects: collections of elements of arbitrary types, plus associated
operations, accessed by name.

Object types must be declared before they can be used; example:
class color {

String name;
float re

float green;

float blue;

[image: image24.png]Use of object types

// Declare three color variab
color r,w,b;

// Initiali color variables to r white and black.

r = new
T .name r.red = r. r.blue =

W = new

w.name w.red = 1.0; w.green = 0.0; w.blue = 0.0;
b = new

b.name b.red = b.green = 0.0; b.blue = 0.0;

Both non-primitive data types are handled by reference: The varia-
ble content is just the address of a memory block.

An assignment to such a variable only changes this address, not
the data of the memory block.

null is the default value for reference types

Java operators

[image: image25.png]Prec Operators types assoc. meaning
1 ++ arithmetic pre- or post-increment
-- arithmetic pre- or post-decrement
+,- arithmetic unary plus or minus
~ integral bit complement
! boolean logical not
(type) any typecast
2 *,/.% arithmetic L multiplication, division,
remainder
3 e arithmetic L addition, subtraction
+ String L concatenation
4 << integral L shift bits left
>> integral L shift bits right, filling with sign
>>> integral L shift bits right, filling with zero
5 <,e=,3, 5= arithmetic comparisons
instanceof object, type type comparison

[image: image26.png]Prec Operators types assoc. meaning
[==, I= any L equality, inequality
7 & integral L bitwise AND
& boolean L boolean AND
8 ~ integral L bitwise XOR
- boolean L boolean XOR
9 integral L bitwise OR
boolean L boolean OR
10 boolean L short-circuit AND
" boolean L short-circuit OR
12 boolean,any,any conditional selection
13 variable, any R assignment
variable, any R operation and assignment

("assoc" = order of association, i.e., evalutation from left (L) or right (R) when several operators of the same level occur in the same expression)

Functional abstraction, self-defined methods

[image: image27.png]Phenomenon to deal with: repetition of identical or almost identi-
cal code fragments — especially if these fragments are quite long.

Problems:

(1) Changes in the code have to be repeated for each occurrence
of the code fragment.

(2) Code cannot occur in itself — recursive algorithms cannot be
coded directly.

Solution: methods (in OO-languages) and procedures and functi-
ons (in non-00 languages).

Methods can be used like extensions of the language.

[image: image28.png]Example: compute maximum of two integers

int max(int p1, int p2)

{

return (pl>p2 ? pl : p2);

}

Use of the method:
int a, b;
int x;

x = max(a,b);

Example: compute the factorial of an integer

"factorial": n! = n * (n–1) * ... * 3 * 2 * 1.

[image: image29.png]Recursion: Compute factorial

int fac(int i)
if (1<=1)

return 1;

}

else

return i*fac(i-1);
}
}

For this problem, nobody would use recursion! A simple while-
loop would suffice. Recursion can be unnecessarily inefficient.

[image: image30.png]Example: compute the sum of the elements of an array:

int computeSum(int[] p)

{
// This variable accumulates the result.
int r = 0;

// This variables points to the different positions in (p),
// starting at 0 and running to the end.
int i = 0;

// Run with (1) through (p), accumulating the sum of elements in

// (x).

while(i < p.length)

{
r-r
1-1

}

// Return result.
return r;

plil;
1;

S
,

[image: image31.png]Questions regarding computesum: Details are important!
Does it work for empty (p) ?

Is < the right comparison in the condition of the while clause, or
would <= be right?

Should i start with another value than 0?

How could a solution look like in which i runs through p in the op-
posite direction?

[image: image32.png]General structure of method declaration (incomplete version)

<type> <methodName> (<parameterlist, empty for no parameterss)

<method body, including *‘return <expressions’’>

Method interface: type of return value, name of method, and types
and names of parameters.

Method body: code fragment performing the work.

return statement: Execution leaves the method and returns the
value of the expression as result.

[image: image33.png]Problems solved:

(1) Similar code does not have to be repeated — where it is nee-
ded, it is just invoked or called with the proper parameters. Chan-
ges only have to be done once.

(2) Recursion can be coded directly.

Further consequences:

(3) Functionality of code fragments can be documented by giving
a symbolic name to a code fragment.

(4) Code fragments are usable without that all the details are
known — only knowledge about the interface and the I/0-behavior
is necessary. Consequence: Implementation can be changed.

Method call:

e.g. x = max(a, b);

Effects:

· control flow jumps from the place where the method is called to the place where the method is defined

· the method is executed

· the control flow jumps back to the place where the method was called and the return value is assigned to x.

Control structures of Java

control structures:

language concepts designed to control the flow of operations

– typical for the von Neumann paradigm

particularly: branching of the programme; loops.

Variants of branching:

[image: image34.png]if (<condition>)

fulfilled conditions>

(if the condition is false, nothing happens)

if (<condition>)

 {

 <Code for fulfilled condition>

 }

else

 {

 <Code for unfulfilled condition>

 }
Nesting of if...else possible:

[image: image35.png]if (<condl>)

e for fulfilled <condl>>

if (<cond2>)

for non-fulfilled <condls, but fulfilled <cond2s>

to be executed if NO condition is fulfilled»

Example application: Finding the solutions of a quadratic equation ("pq-formula")

[image: image36.png]public static double[] solve_quadratic(double p, double q)

{

double x = -p/2, ¥ = X*%-Q;
doublel] result;

if (y<0)

{
// Term under square-root is negative. No solution.
result - new double[0];

glse if (v < 1E-20)

. // Term under square-root is zero. One solution.
result = new double[1]; result[0] = x;

}

else

{

// Term under square root is positive. Two solutions.

double z = Math.sgrt(v);
result - new double[2]; result[0]

}

return result;

x+z; result[1]

x-z;

Alternative: switch construction

Branching not binary, but with several alternatives at the same level

[image: image37.png]switch(<Expressions)

i

case <Selectorls:

gelectorlss

e for the <Expr

<Expr Selector2s>

that no

ions>

selector equa
break;

<Expr

Example application:

[image: image38.png]public static String describe (Font

{

string s;

switch (font.getstyle())

{

case Font.ITALIC:
s = "italic";
break;
case Font.BOLD:
s = "bold";
break;
case Font.BOLD+Font .ITALIC:
s = "bolditalic";
break;
default:
case Font.PLAIN:
s =,
break;

}

return s;

}

font)

Special form of branching for error handling:

the try construction

[image: image39.png]to be executed if <excls>

thrown in <tr

to be executed, if <try-codes finished

in a normal or in some exceptional wa

throw <e

Example application:

[image: image40.png]static public int ged(int pl, int p2)
throws ArithmeticException
{
// compute absolute values.
Pl = (pl<0 ? -pl : pl);
P2 = (p2<0 ? -p2 : p2);

// Check that both parameters are strictly positive.
if (p1==0] |p2==0)

{
}
while (p21=0)
{
int tmp = pl % p2;
Pl = p2;
P2 = tmp;

}

return pl;

throw new ArithmeticException ("Parameters not strictly positive");

[image: image41.png]int x = ged(a,b);

em.out.println("The great common divis

+a+ "and " + b

PO =R L

catch(ArithmeticException ex)

em.out.println("Cannot compute the greatest"

common divisor of " + a

LT R

Loops:

we have already used the while loop.

Second variant: "do ... while"

[image: image42.png]while (<Condition>)

{
<Code to be repeated while <Conditions
is fulfilleds
}
do
{

<Code to be repeated while <Conditions
is fulfilleds
} while (<Conditions)

A do-while-loop executes its code at least once, even if the con-
dition is not fulfilled at the beginning; a while-loop checks the con-
dition before the code is executed once, i.e. possibly, it does not
execute its code at all.

The for loop

[image: image43.png]i

Similar to:

<Initializations;

ode to be repeateds

<Increments

<Increment =)

Application example:

[image: image44.png]static public int computeSum(int[] p)

i

int result = 0;

for(int i1=0; i<p.length; ++i)

i

result += p[i];

return result;

