
4a. Programming languages (continued) 
 
Programming languages differ not only in their 
underlying paradigm, but also in many other aspects 
 
- e.g., in the way how functions and operators are written 
 
 
a function: 
 

mathematically a mapping 
 

f:   a1     a2     a3     a4      →      r  ( = result) 
 
in mathematics we write normally: 
 

f(a1, a2, a3, a4) = r 
 
Different numbers of arguments ("arity"): 
 
f()   0-ary function (no argument) 
f(a1)   unary function 
f(a1, a2)  binary function 
f(a1, a2, a3) ternary function 
.... 
 
in this notation, first comes the function symbol 
and then the list of arguments (enclosed in parentheses) 
 
= "prefix notation" 
 
Disadvantage:  in case of nested functions, evaluation 
proceeds from right to left (contrary to usual direction of 
reading in everyday life) 
     g( f(x) )  :   apply first f, then g 



An operation like "addition" can also be seen as the 
application of a function "+" 
 
in this case we write usually   a1 + a2 
 
= "infix notation" 
 

The function symbol stands between the two operands 
 
• in prefix notation it would be   +(a1, a2)  

 
Disadvantages of infix notation: 
• only possible for 2 arguments 
• danger of ambiguities:   a1 + a2 * a3 

                               must be resolved by priority rule 
 
Both prefix and infix notation are used in many 
programming languages, e.g. C and Java 
 
3rd possibility:  "postfix notation" 
 
used in the language PostScript for all functions 
(including addition, multiplication...) 
 
• function and operator symbols stand always behind 

their operands 
• if consequently applied, no parentheses necessary! 

 
a1f  stands for f(a1) 
a1a2f stands for f(a1, a2)           etc. 
 

also  a1a2 add    for a1 + a2 
 
xfg  :  apply first f, then g  (order of evaluation from left to 
right) 



example: what is the result of the PostScript expression 
 3   5   7   add   1   sub   mul       ? 
 
 3    12           1   sub   mul 
 
 3           11              mul 
 
             33 
 
In other languages, too, postfix notation is sometimes 
used 
e.g. in Java and C:   x++   means "increment x by 1" 
                              "++" as an operator in postfix notation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Boolean algebra and propositional logic 
 

 
 
What is a "proposition" ? 
 

 
 
 
Truth values of propositions: true, abbreviated: T or t 
                                                false, abbr. F or f 



Propositions can be combined using junctors 
 

(operators controlling the truth of the combined 
proposition) 
 
Examples: 
The "Lausitzer Rundschau" is a newspaper and the 
Venus is a planet. 
3 < 2  or  1+1=2 . 
 
Symbolic notation for propositional junctors: 
 
¬ "not" (Negation; has only one operand) 
 
∧ "and" (Conjunction) – reminder: And  ≈ Λ 
 
∨ "or"   (Disjunction)  – reminder: latin "vel" 
 
→ "implies" (Implication) 
 
↔ "are equivalent" (Equivalence) 
 
 

 
 
"Truth tables": 

 



further junctors: NAND (not and) and NOR (not or) 
 

 
 
 
Boolean functions 
 

 
 
 
 



How many Boolean functions are there 
with n arguments? 
 

 
 
Binary Boolean functions: 
 

 
Each n-ary Boolean function can be built from binary Boolean functions. 



Applications of Boolean functions: 
 

• design of switching circuits from simple elements 
(e.g., NAND- or NOR-gates) 

• combination of conditions which must be fulfilled in 
order to execute some parts of programmes (most 
programming languages provide Boolean data type 
and functions) 

• part of network models, e.g., in molecular genetics 
• Proofs of equivalence of logical expressions 
• they are part of logic-based programming languages 

like PROLOG 
• applications in "knowledge engineering" 

 
 
How can knowledge be represented in computers? 
 

- not only by simple listing of numbers 
- not by text only (text must be read and interpreted by 
   humans, the computer cannot understand its meaning) 
 
we need a representation of "knowledge items" 
(statements, facts...) which can be processed by the 
computer, i.e., sensefully transformed in a purely formal 
way (without interpretation by human beings) 
 
A first step: 
Propositional formulas 
 

= basically: propositions where variables are allowed 
 
We build propositional formulas recursively from: 
• variables 
• constants (T and F) 
• junctors 
• auxiliary symbols (parentheses) 



 
 
 
 

 
 
 
 
 
Assumption: 
We can "know" if a proposition (without variables!) is true 
in a given situation. 
(This means, we use only such "secure" propositions in 
our knowledge base – or we restrict the situations 
accordingly.) 



 
 

 
 
 
 
 
 



 
 
 

 
 
 
 

 
 
 
 



Properties of propositional formulas: 
 

 
 
 

 
 



 
 

 
 



Some important equivalences of propositional logic / 
Boolean algebra: 
 
The formulas in the right-hand column are all 
tautologies, i.e., they give always the value T (true) 
 

 
 
 
Propositional formulas alone are normally not sufficient 
to represent knowledge. 
Even in mathematical statements, there are often 
additional informations connected with variables which 
cannot be expressed by a propositional formula: 
E.g.,  "for all x, x+1>x" 
 
Next complexity level of logic: Predicate logic 
- not covered here in detail, only the basic notations: 
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