
4a. Programming languages (continued)

Programming languages differ not only in their
underlying paradigm, but also in many other aspects

- e.g., in the way how functions and operators are written

a function:

mathematically a mapping

f: a1 a2 a3 a4 → r (= result)

in mathematics we write normally:

f(a1, a2, a3, a4) = r

Different numbers of arguments ("arity"):

f() 0-ary function (no argument)
f(a1) unary function
f(a1, a2) binary function
f(a1, a2, a3) ternary function
....

in this notation, first comes the function symbol
and then the list of arguments (enclosed in parentheses)

= "prefix notation"

Disadvantage: in case of nested functions, evaluation
proceeds from right to left (contrary to usual direction of
reading in everyday life)
 g(f(x)) : apply first f, then g

An operation like "addition" can also be seen as the
application of a function "+"

in this case we write usually a1 + a2

= "infix notation"

The function symbol stands between the two operands

• in prefix notation it would be +(a1, a2)

Disadvantages of infix notation:
• only possible for 2 arguments
• danger of ambiguities: a1 + a2 * a3

 must be resolved by priority rule

Both prefix and infix notation are used in many
programming languages, e.g. C and Java

3rd possibility: "postfix notation"

used in the language PostScript for all functions
(including addition, multiplication...)

• function and operator symbols stand always behind

their operands
• if consequently applied, no parentheses necessary!

a1f stands for f(a1)
a1a2f stands for f(a1, a2) etc.

also a1a2 add for a1 + a2

xfg : apply first f, then g (order of evaluation from left to
right)

example: what is the result of the PostScript expression
 3 5 7 add 1 sub mul ?

 3 12 1 sub mul

 3 11 mul

 33

In other languages, too, postfix notation is sometimes
used
e.g. in Java and C: x++ means "increment x by 1"
 "++" as an operator in postfix notation

5. Boolean algebra and propositional logic

What is a "proposition" ?

Truth values of propositions: true, abbreviated: T or t
 false, abbr. F or f

Propositions can be combined using junctors

(operators controlling the truth of the combined
proposition)

Examples:
The "Lausitzer Rundschau" is a newspaper and the
Venus is a planet.
3 < 2 or 1+1=2 .

Symbolic notation for propositional junctors:

¬ "not" (Negation; has only one operand)

∧ "and" (Conjunction) – reminder: And ≈ Λ

∨ "or" (Disjunction) – reminder: latin "vel"

→ "implies" (Implication)

↔ "are equivalent" (Equivalence)

"Truth tables":

further junctors: NAND (not and) and NOR (not or)

Boolean functions

How many Boolean functions are there
with n arguments?

Binary Boolean functions:

Each n-ary Boolean function can be built from binary Boolean functions.

Applications of Boolean functions:

• design of switching circuits from simple elements
(e.g., NAND- or NOR-gates)

• combination of conditions which must be fulfilled in
order to execute some parts of programmes (most
programming languages provide Boolean data type
and functions)

• part of network models, e.g., in molecular genetics
• Proofs of equivalence of logical expressions
• they are part of logic-based programming languages

like PROLOG
• applications in "knowledge engineering"

How can knowledge be represented in computers?

- not only by simple listing of numbers
- not by text only (text must be read and interpreted by
 humans, the computer cannot understand its meaning)

we need a representation of "knowledge items"
(statements, facts...) which can be processed by the
computer, i.e., sensefully transformed in a purely formal
way (without interpretation by human beings)

A first step:
Propositional formulas

= basically: propositions where variables are allowed

We build propositional formulas recursively from:
• variables
• constants (T and F)
• junctors
• auxiliary symbols (parentheses)

Assumption:
We can "know" if a proposition (without variables!) is true
in a given situation.
(This means, we use only such "secure" propositions in
our knowledge base – or we restrict the situations
accordingly.)

Properties of propositional formulas:

Some important equivalences of propositional logic /
Boolean algebra:

The formulas in the right-hand column are all
tautologies, i.e., they give always the value T (true)

Propositional formulas alone are normally not sufficient
to represent knowledge.
Even in mathematical statements, there are often
additional informations connected with variables which
cannot be expressed by a propositional formula:
E.g., "for all x, x+1>x"

Next complexity level of logic: Predicate logic
- not covered here in detail, only the basic notations:

	Boolean functions
	How can knowledge be represented in computers?
	Propositional formulas

