4a. Programming languages (continued)

Programming languages differ not only in their underlying paradigm, but also in many other aspects

- e.g., in the way how functions and operators are written

a function:

mathematically a mapping

f:   a1     a2     a3     a4      (      r  ( = result)

in mathematics we write normally:

f(a1, a2, a3, a4) = r

Different numbers of arguments ("arity"):

f()


0-ary function (no argument)

f(a1)


unary function

f(a1, a2)

binary function

f(a1, a2, a3)
ternary function

....

in this notation, first comes the function symbol

and then the list of arguments (enclosed in parentheses)

= "prefix notation"

Disadvantage:  in case of nested functions, evaluation proceeds from right to left (contrary to usual direction of reading in everyday life)

    
g( f(x) )  :   apply first f, then g
An operation like "addition" can also be seen as the application of a function "+"

in this case we write usually   a1 + a2
= "infix notation"

The function symbol stands between the two operands

· in prefix notation it would be   +(a1, a2) 

Disadvantages of infix notation:

· only possible for 2 arguments

· danger of ambiguities:   a1 + a2 * a3

                               must be resolved by priority rule

Both prefix and infix notation are used in many programming languages, e.g. C and Java

3rd possibility:  "postfix notation"

used in the language PostScript for all functions (including addition, multiplication...)

· function and operator symbols stand always behind their operands

· if consequently applied, no parentheses necessary!

a1f

stands for f(a1)

a1a2f
stands for f(a1, a2)           etc.

also  a1a2 add    for a1 + a2
xfg  :  apply first f, then g  (order of evaluation from left to right)

example: what is the result of the PostScript expression

 3   5   7   add   1   sub   mul       ?

 3    12           1   sub   mul

 3           11              mul

             33
In other languages, too, postfix notation is sometimes used

e.g. in Java and C:   x++   means "increment x by 1"

                              "++" as an operator in postfix notation

5. Boolean algebra and propositional logic

[image: image1.png]Logic: The art of thinking, especially: of drawing correct conclusions

Formal Logic: The search for correct forms of conclusions
Aristotle, stoics, medieval scholars
Relevant for computers!

Propositional logic: Analyzing sentences up to whole constituent
sentences. Further analysis in predicate logic.




What is a "proposition" ?

[image: image2.png]Propositions: Utterances which are true or false.
Examples:

The “Lausitzer Rundschau” is a newspaper.

Itis raining.

3<2.

Counterexamples:

Is it raining?

Shut the door, please!




Truth values of propositions: true, abbreviated: T or t
                                                false, abbr. F or f
Propositions can be combined using junctors
(operators controlling the truth of the combined proposition)

Examples:

The "Lausitzer Rundschau" is a newspaper and the Venus is a planet.

3 < 2  or  1+1=2 .

Symbolic notation for propositional junctors:

(
"not" (Negation; has only one operand)

(
"and" (Conjunction) – reminder: And  ( (
(
"or"   (Disjunction)  – reminder: latin "vel"

(
"implies" (Implication)

(
"are equivalent" (Equivalence)

[image: image3.png]Convention for dropping braces: — binds tighter than A, » binds tigh-
ter than v, v binds tighter than — and —.




"Truth tables":

[image: image4.png]Truth table representation of semantics of propositional junctors:

S Y| 8|sAY |8V |—v|d oy
fryel 7 7 t t
el e 7 t t f
ey t ! £
ele| r| ¢ t t t




further junctors: NAND (not and) and NOR (not or)

[image: image5.png]Definition of NAND and NOR
(SNANDY) — =(é A 1)

R e

NAND | NOR

Y
HE
flt
tf
t|t

oo
BN




Boolean functions

[image: image6.png]George Boole, Scotland (1815-1864, developed Boolean algebra)
Switching functions: Functions from {0,1}" — {0,1}"
Boolean functions: Switching function with n = 1.

Theory of Boolean functions: Connected to propositional logic (by
using the code ' — 0,7 — 1). Propositional junctors are used to

describe Boolean functions.

An arbitrary switching function can be represented by a vector of n
Boolean functions of the form {0,1}" — {0,1}.




How many Boolean functions are there

with n arguments?

[image: image7.png]Nullary Boolean functions: can be identified with 0 and 1.

Unary Boolean functions: There are four. Inputs are 0 and 1. Results
can be:

(0 — 0,1 — 0): The constant 0.
(0 — 0,1 — 1): Identity.

(0~ 1,1 — 0): Negation.
(0~ 1,1~ 1): The constant 1.

Binary Boolean functions: There are 16.

n-ary Boolean functions: There are 2" inputs, and for each input
there are 2 alternatives, thus: There are 22' n-ary Boolean functi-
ons.

Boolean operators: —,V,A




Binary Boolean functions:

[image: image8.png]All binary Boolean functions

Arguments (xy): (00)

©

a Boolean expression for the function

z A -

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

R = X=X = P 3

[ O = F N g NN O SRR
~O0-s0-20-20a0—20=0=





Each n-ary Boolean function can be built from binary Boolean functions.

Applications of Boolean functions:

· design of switching circuits from simple elements (e.g., NAND- or NOR-gates)

· combination of conditions which must be fulfilled in order to execute some parts of programmes (most programming languages provide Boolean data type and functions)

· part of network models, e.g., in molecular genetics

· Proofs of equivalence of logical expressions

· they are part of logic-based programming languages like PROLOG

· applications in "knowledge engineering"

How can knowledge be represented in computers?

- not only by simple listing of numbers

- not by text only (text must be read and interpreted by

   humans, the computer cannot understand its meaning)

we need a representation of "knowledge items" (statements, facts...) which can be processed by the computer, i.e., sensefully transformed in a purely formal way (without interpretation by human beings)

A first step:

Propositional formulas

= basically: propositions where variables are allowed

We build propositional formulas recursively from:

· variables

· constants (T and F)

· junctors

· auxiliary symbols (parentheses)

[image: image9.png]Express propositions in a strictly defined language

Recursive definition of propositional formulas (p.f.):

1) Propositional variables p; (i € Ng) are p.f.

2a), 2b) T (true) and F (false) are p.f.

3) For a p.f. ¢, the negation (—¢) is a p.f.

4a), 4b), 4c), 4d) For two p.f. ¢ and ¢, the conjunction (¢ A 1), the
disjunction (¢ Vv v), the implication (¢ — ) and the equivalence

(¢ — ) arepf.

Propositional junctors: —, A, v, — and —




[image: image10.png]This defines a syntax, i.e. a set of correctly formed finite sequences
over the set of symbols.

Examples for correctly formed sentences: pg, 1, F, =p3, p3 A p17

What are their meanings, i.e. their semantics?




Assumption:

We can "know" if a proposition (without variables!) is true in a given situation.

(This means, we use only such "secure" propositions in our knowledge base – or we restrict the situations accordingly.)

[image: image11.png]Model relation:
AE¢

means: Proposition ¢ is true in situation A.

Semantic implication:

¢1...n =@

means: In all situations in which ¢ ... on are true, also ¢ is true.

Example: p1.p> = p1 A p2




[image: image12.png]A pf.isinterpreted as either true or false. But how does its structure
determine its meaning, i.e. its semantics?

The propositional variables p; represent concrete propositions,
which can be true or false in any given situation. Example: pg can
mean: ‘It is raining.”

In a given situation, each p; is assigned a truth value. We represent
this by a function p : {p;|i € Ng} — {true, false}, assigning a truth
value to each propositional variable.

The meaning of a formula ¢ depends only on the interpretation of
the propositional variables p; thus, situation A (in 4 = ¢) can be

represented by p alone.

Meaning of ¢ in a situation characterized by p is written as [[¢]] .




[image: image13.png]We define the meaning of a p.f. inductively; the junctors represent
abstractions of their equivalents in natural language:

1) [Ip:]1 equals p(p:)

2a) [1']p equals true, 2b) [[F] p equals false, i.e. both meanings are
independent of p.

3) [=¢]lp equals the negation of [[¢] .

4a) [[¢ » ¢]lpis true if and only if (iff) both [¢], and [[+]], are true.
4b) [[¢ v ¢], is true iff at least one of [¢] , and [[+/] , is true.

4c) [[o — ], is true iff [¢] , is false or [v'] , is true.

4d) 1, is true iff [¢], and [v'], have the same value.





[image: image14.png]3. and 4. are the inductive parts of the definition in which we show
how the meaning of a complicated expression depends on the mea-
nings of its parts.




[image: image15.png]Example: Computing the semantics of ((pg — p1) — po) — po:
polpi|H=po—p |G=H—po|C—po
77 t
!
t
t

-y

t
t
t

)

t
t
&
t




Properties of propositional formulas:

[image: image16.png]Meaning does not depend on interpretation of prop. variables which
do not occur in the formula.

Tautology: A formula which is true in all situations. Examples: pg
—po.po = po. (po — p1) = (=po V p1), (Po = p1) = ((Po
p1)V (=po A=p1)), T

Contradiction: A formula which is false in all situations. Example:
po A—po, F

Equivalence. Two formulas ¢ and v are equivalent if (¢) — (v)
is a tautology.




[image: image17.png]Disjunctive normal form (DNF)

A formula is a literal if it is a propositional variable or a negated
propositional variable.

A formula is in disjunctive normal form if it is a finite disjunction of
finite conjunctions of literals.

For each p.f., there is an equivalent one in disjunctive normal form.
(Construct from truth table.)

The conjunctions describe different combinations of values for the
propositional variables for which the formula becomes true.

Example: (pg — p1) is equivalent to the DNF formula (pg / p1) v/
(=po A —p1) (seen at truth table).

DNFs can be written without braces.




[image: image18.png]Not all prop. junctors are strictly necessary. By expressing a formula
as DNF, only v, A and - are used.

Negation and conjunction suffice to express equivalent formulas:
Fis equivalent to ¢ A —¢.

& Vv ¢ is equivalent to = (—¢ A =),

T is equivalentto ¢ vV —¢.

& — s equivalent to —¢ v ¢

¢ — is equivalentto (¢ — ) A (¢ — ¢).




[image: image19.png]Also implication and F alone suffice to express the others:
—¢ is equivalent to ¢ — F

A set of junctors which suffices to express the others is called com-
plete. A minimal complete set of junctors is called a basis.

Boole’s complete set: {—. A, v}
DeMorgan’s bases: {—, A} and {-, v}
Frege’s basis: {-, —}

NAND basis: {NAND}

NOR basis: {NOR}




Some important equivalences of propositional logic / Boolean algebra:

The formulas in the right-hand column are all tautologies, i.e., they give always the value T (true)

[image: image20.png]double negation

commutativity of conjunction
commutativity of disjunction

associativity of conjunction

associativity of disjunction

distributivity of conjunction into disjunction
distributivity of disjunction into conjunction
implication

negation of implication operands

de Morgan laws

g — P

ONY = PN

PV =YV

BAB)Ax o $A W AX)
(pV )V x — oV (P VX)

PAN(PVX) =AYV IAY

oV (W AX) = (pVYP)A(PV X)
(¢ =) = (mp V)

(¢ —¢) = (—p — —¢)
(V) = (= A1)
—(pAY) = (mpV )




Propositional formulas alone are normally not sufficient to represent knowledge.

Even in mathematical statements, there are often additional informations connected with variables which cannot be expressed by a propositional formula:

E.g.,  "for all x, x+1>x"

Next complexity level of logic: Predicate logic

- not covered here in detail, only the basic notations:

[image: image21.png]Formulas of the form ¥a : P(x) mean: All = in the underlying
universe have the property P.

Formulas of the form 3z : P(x) mean: There is an z in the under-
lying universe which has the property P.

Example in the universe of the integers: Vo : 3y 1y > «




