
3a. Computer architecture and hardware (continued)

CPU components:

arithmetical-logical unit (ALU)

data registers:
 data (inputs from system bus and output),
 register address (input from control unit)

control unit (CU): instruction register, sequencer,
 programme counter, status register (see below)

internal CPU bus for interconnection of the components

Components of the control unit (CU):

Instruction register (IR):
data (input from system bus), opcode (output to ALU),
modifier (output to ALU), data address (output to system
bus, to data registers)

Sequencer: controls sequence of operations for content
of the instruction register

Programme counter (PC):
data (input from ALU, output to system bus), add2/add4
(inputs from instruction register)

Status register (SR):
flagsIn (input from ALU), flagsOut (output to ALU), load
(input from instruction register)

A typical 6-step ALU machine cycle:

Assembler Code:

Different variants of the same programme:
(left column: programme in a high-level language – Java
or C)

Physical realisation of the CPU and memory
(hardware):

Semiconductor (silicon) chips
highly integrated arrangements of electronic switches
(transistors) and electronic storage elements on (mostly)
2-dimensional plates
produced with optical-chemical imprinting methods

A microprocessor:

Alternative techniques:
- optical computing (using light instead of electricity)
- quantum computing (using quantum effects, especially
 for parallelisation)
both are currently more of theoretical interest,
no mature technologies

other hardware components:

The periphery

(= all what is connected with a computer but the task of
which is not primarily to compute)

Keyboard
normally resembling traditional typewriter keyboard, with
additional number panel and function keys
– electrical switches below the buttons

Caution: placement and lettering of keys depends on
country
Operating system of the computer must "know" the key
scheme

Mouse
most important graphical input device
– mechanical mouse: ball with motion sensors
– optical mouse: tracking of motions using light emission
 and sensing
Motion signals are interpreted by operating system
and/or application programmes

Display

transforms electrical signals in non-permanent optical
signals
traditionally solutions technically different from television
(but currently trend to converge: digital TV, multimedia
programmes...)

2 main techniques:
- cathode ray tube (CRT)
- liquid crystal disply (LCD)

Cathode ray tube:
• Electron ray is emitted by a cathode
• direction controlled by magnetic fields
• hits substance on the inner side of the screen glass

which emits light when stimulated by electrons

electron ray control of
direction

cathode

focusing unit

electron ray hits pixel only for short time
but: persistence of light emission for some time after
stimulation (phosphorescence)

⇒ persistence determines the necessary refresh rate to
ensure the impression of a flicker-free, standing image

picture repetition frequency (for refresh):
usually between 30 and 80 pictures per second

(if it is too small in relation to the persistence: Blurring
when motion occurs, "ghost images")

Colour display:
Shadow mask colour CRT

3 separate cathodes
screen covered with triples of red, green and blue
phosphor dots
mask with small holes in front of the phosphor dots
ensures that each of the 3 rays hits only its appropriate
colour dots
colour perception by additive composition of red, green
and blue light

electron ray systems
(for red, green, blue)

mask

glass with phosphor
dots of different colour

(other arrangements of the dots exist, e.g. in lines
instead of triangular – "inline displays")

Evaluation of the CRT technique:

(+) high resolution
(+) good colours, high luminance
(+) relatively cheap
(+) mature technique, low defect rate
(–) vacuum tubes are heavy and clumsy
(–) high power input (∼ 80 W)
(–) flickering
(–) geometrical distortions
(–) X-ray emission

Liquid Crystal Display (LCD):

liquid crystals (discovered 1888 by Reinitzer):
• organic molecules, oval or disk-like form
• axes tend to be orientated in parallel

Twisted nematic cells:
liquid crystals enclosed between two glass plates with
polarising characteristics, caused by tiny ridges
rotated by 90° against each other

glass plates transmit only light oscillating in one specific
direction (polarised light)

• Without tension, the LC molecules arrange in a way

that causes a light beam to twist and to pass both
glasses

• With tension (5 V), the molecules reorientate and the

light passing the first glass is not twisted ⇒ it cannot
pass the second glass

Each cell of the screen must be controlled separately
⇒
Thin Film Transistor (TFT) technology:
each cell has its own electronic switch (transistor)
positioned in one corner of the pixel
production with photochemical techniques

Structure of an LCD:

s
transistors
with network of
polariser
glass
electrode
RGB filter

control connections

dispersing
glass

light source

liquid crystal

Evaluation of the LCD technique:

(+) low power input (25 W)
(+) low voltage
(+) no flickering
(+) good contrasts
(+) digital
(+) low weight, small
(+) appropriate for mobile machines
(–) cells work passively: extra light source necessary
(–) narrow view sector
(–) production relatively complicated

Further graphical output devices:

Plotters

motor

pens rotating
cylinder

motor

paper rolls

Printers:

• matrix printer (needles, mechanically printing,
typewriter principle)

• inkjet printer (jets pressing ink on the paper)

• xerographic printers ("laser printers")
 (same principle as in copy machines):

Original rotating mirror

cleaning

decharging
charging

exposition to
light

fixation

Paper

color printing realised by serial combination of several
stations with differently coloured toners.

Realisation of gray values and colours with printers
which can only print black and white (or only few
colours):
Halftone technique

halftone matrices for 5 gray values using only black and
white

4. Basic facts about operating systems and
programming languages

Operating system (OS):
Basic software which manages all technical procedures
necessary when using a computer, like
- starting the computer when it is switched on ("booting")
- allocating memory space
- reading and writing files
- organising files (e.g., in "directories")
- communicating with the periphery
- organizing input and output
- control of programme execution

Different philosophies of giving commands to the OS:

• typing the command in a command line

• clicking with the mouse on (virtual) buttons, menues,
sliders, icons...: The command line is replaced by a
GUI (Graphical User Interface), often with "desktop
metaphor" (attempt to mimick a real office desktop –
but it isn't really so!)

Important contemporary operating systems:

• Microsoft (MS) Windows (variants XP, 2000, NT,
98...)

• Unix (several variants exist, e.g. for Sun, IBM, SGI...)
• Linux (similar to Unix, free software)
• Mac-OS (Apple)
• MS-DOS (old predecessor of MS-Windows): pure

command line system

Files:
sequential collections of data, stored on data carriers
(harddisks, floppies, CD-ROM, DVD, tape...),
can be identified by file names.

Caution:
The sequential order of data in a file does generally not
directly correspond to a physical order of the data on the
carrier medium!
Data are often "physically fragmented"
(you can use defragmentation programmes to speed up
access to files on your computer)

The data carrier must be formatted and initialised:
this induces a subdivision in so-called "cylinders" and
"segments" (abstract notions!)
On each data carrier, there is an FAT = File Access
Table – to find the files on the carrier

In nearly all operating systems, there is the possibility to
organise files in hierarchical directories (or "folders").

Navigation in the tree of directories:
- in MS-DOS and Windows:
 X:\directory\directory\... \filename = "path"
 (X: is the name of the drive,
 normally: A: floppy disk drive,
 B: floppy disk drive,
 C: hard disk drive,
 D: hard disk drive,
 E: CD-ROM drive or DVD drive)
- in Unix and Linux:
 /directory/directory/... /directory
 - there is only 1 root directory
 - the separating character is "/" instead of "\"

Naming of files:

- in MS-DOS and Windows:
 often the name structure name.extension
 is used,
 where "extension" is short (preferentially 3 letters)
 – historical reasons (MS-DOS).
 Attention: the extension is often not displayed
 (this feature can be switched on or off).

 Typical extensions:

 .EXE executable programme
 .COM (small) executable programme
 .TXT text file
 .DOC Word document (formatted text)
 .GIF image file
 .JPG image file
 .PS PostScript file (printable)
 .PDF document file for Acrobat Reader software
 .HTM or .HTML web document
 .JAVA Java code (programme source code)
 .BAT batch file: command sequence for the OS

 Special files: AUTOEXEC.BAT, CONFIG.SYS,
 WIN.INI
 - control booting behaviour and configuration
 of the computer (known periphery, keyboard
 language, mouse...)

- in Unix and Linux:
 less restrictions to file names than in DOS
 names beginning with a dot (.) designate "hidden" files
 Examples: .login , .profile (control files like AUTO-
 EXEC.BAT)

Files can have attributes:

• hidden
• write-protected
• Archive
• system file ...

Systematic access control flags under Unix and Linux:

r = read (you are allowed to read)
w = write
x = execute

each can be given for:

u = user
g = group
o = others

Up to now: 3 sorts of programming languages were
introduced

- machine code
 (machine-specific, directly executable,
 sequences of bits, resp. half-bytes – hexadecimal code:
 hard to read for humans)
- assembler languages
 (translation of machine code in mnemonic abbreviations like
 "add", "jmp"...; but still machine-specific and
 of a technical nature)
- operating system commands
 and several of them combined: "batch files"
 → OS translates them into machine code instructions
 machine-independent, but specific for the OS
 – only of limited power and flexibility

"High-level programming languages":

artificial languages
- designed for humans: lisible, easy to learn, intuitive
- also designed for computers: efficient to implement
- providing full power and flexibility

Programmes written in a high-level language must be
translated into machine instructions

Two ways of implementation:

• Interpreter

simulates a computer which understands the high-level
language (i.e., the source code written in it)
→ enables interactive programming

source code → interpreter ↔ computer

Examples of languages: Smalltalk; simple versions of
Basic

• Compiler
translates the whole source code into machine code
→ this can enable an improvement of efficiency
(optimisation) already during translation (compilation)

source code → compiler → target code → computer

Examples of languages: C, C++, Pascal, Fortran

In the case of larger programmes, often two steps are
done:
- Compiler translates single modules (parts of the
software)
- Linker merges these into an executable programme

Development tools for specific languages often contain
editor (for source code text) + compiler + linker +
debugger + further tools.

Combination of both approaches (aim: platform
independence, "write once – run everywhere"):

source code → compiler → intermediate code
 (byte code)
 indep. of processor and OS

intermediate code → interpreter ↔ computer
 (e.g.
 JVM = Java virtual machine)

Example language: Java.

To be distinguished:

• source code files (name extensions .java, .c, ...)

• objectcode files (compiled, but not yet linked
modules)

• intermediate code files (.class)

• executable programmes (applications; name
extensions .exe, .com or without extension)

• applets: executable programmes which cannot run
alone but only from other applications, usually from
web browsers (are not allowed to modify files on
harddisk)

• control files for compiler or development tools (.prj,
makefile)

"Evolution tree" of high-level programming languages:

early machine languages

Development of programming languages

Very widespread programming languages:

FORTRAN (1955) ("Formula Translator")
 particularly for numerical computations,
 programme libraries

COBOL (1960) ("Common Business Oriented
Language")
 classical commercial applications

C, C++ (1971, 1992)

PASCAL (1971)

JAVA (1995)
 internet applets

To be distinguished from "proper" programming
languages are document description languages
like, e.g.,
HTML, XML, PDF, RTF, TEX

Intermediate form: PostScript
(Printer language, but incorporates also the
possibilities of a universal programming language)

How to order the many programming languages in a meaningful
way?

"Paradigms of programming":
basic ideas, philosophies behind the language concepts,
patterns of comprehension of "programming"

1. Control flow paradigm (von Neumann paradigm)

is the basis of classical procedural programming

- also realised in assembler code

High-level languages: Fortran, Basic, Pascal, C.

Computer = machine for changing values of variables.

Programme = plan for the process of calculation with
specification of commands and flow of control (e.g.,
loops).

Finding a programme: To find elementary single steps
and to bring them into a flexible order.

Example (in C):

int i, n, z;
n = 10;
i = 1;
while (i < n)
 {
 z = i*i;
 printf("%d\n", z);
 i = i+1;
 }
printf("Finished.\n");

2. Object-oriented paradigm

Typical programming languages: Simula, C++, Smalltalk,
Delphi, Java

Computer = Environment for virtual objects

Programme = Listing of (object) classes, i.e., of general
specifications of objects which can be (multiply) created
and destroyed at runtime of the programme and which
can communicate with each other.

Finding a programme: Specification of the classes (data
and methods) which determine object structure and
behaviour.

Example (in C++):

class matrix
 {
 float field[3][3];
 public:
 void initmatrix(float value);
 void identitymatrix();
 void showmatrix();
 friend matrix sum(matrix a, matrix b);
 };

3. Functional paradigm
(applicative programming, McCarthy paradigm)

Programming languages: Lisp, Lambda calculus, APL,
FP systems

Computer = machine which forms generalisations of
operations, i.e., which can define functionals (like
construction of new notions in mathematics)

Programme = nested expression of applications of
functions

Finding a programme: specification of functions which
can solve the problem

Spezifikation von Funktionen, die das Problem lösen

Example (FP system according to Backus):

def innerprod = (/+) ° (a*) ° trans

defines the inner product of two vectors of arbitrary
dimension

Note: no sequentialisation, no declarations of variables,
very compact programmes are possible.

4. Rule-based paradigm (van Wijngaarden paradigm)

Programming languages:
PROLOG, rule-based AI languages, L-systems, Intran

Computer = transformation machine for states or
structures

There is a current state (a current structure) which is
transformed as long as this is possible.

Working process: process of search and application (of
rules) – "matching" and "rewriting".

Programme = set of transformation rules.

Finding a programme: Specification of the rules.

Example (in Intran):

GCD OF M, N where
 M=N -> M;
 M>N -> GCD OF M-N, N;
 M<N -> GCD OF M, N-M.

Real programmes often contain elements from different
paradigms.

Examples:

- procedural (imperative) parts in Simula, C++ and Java

- declaration of variables in L-systems, etc.

Using a certain paradigm of programming does not yet
determine the choice of the programming language!

Example: Object-oriented programming (OOP) is also
possible in Fortran or C (but with high effort).

But: Using the "appropriate" programming language is
helpful because it already offers the constructions
needed for realising the paradigm – thus it is not
necessary to define them again (e.g. classes in OOP).

	The periphery
	Keyboard
	Mouse
	Display
	Halftone technique
	Interpreter
	Compiler

