Bildanalyse und Bildverstehen Lösung zu Aufgabe U22

(a) Geodetische Distanz dA(p,q)

 min. Länge eines p und q verbindenden Pfades (bzgl . 8- Nachbarschaft), der ganz in A liegt.
 Metrik-Eigenschaften:

- positiv definit : $dA(p,q) \ge 0$ $dA(p,q) = 0 \Leftrightarrow p=q \text{ (Pfadlänge 0)}$
- symmetrisch : dA(p,q) = dA(q,p) klar.
- Dreiecksangleichung :
 Es muss gelten : dA(p,r) ≤ dA(p,q)+dA(q,r)

Pfad von p über q nach r mit Länge d(Pq) to (r dA(p,q) + dA(q,r) gehört zu dem Pfaden ,über die in der Def. Von dA(p,r) das Minimum gebildet wird ⇒ Behauptung.

 \Rightarrow

(b) Für Menge M:

$$dA(p,M) = \min \{ dA(p,m) | m \in M \}.$$

Distanz zur mit "0" markierten Teilmenge:

Jista.	IIZ ZU	и ш	u v	ma	INICI	tCII	I CIII.	neng	· .
5	1	0	1	7	3	4	5	6	14
1	1	0	1	2	3			6	7
0	0	0	1	2	3			7	ヌ
1	1	1	1	2	3			8	8
					3			9	
				L	4		10	10	
	8			5	5				
	ठ	7	6	6	6	6		8	
	8	7				7	7	Š	
				00					

2	1	0	1	2	3	4	5	6	7
1	1	0	1	2	3			6	7
0	0	0	1	2	3			7	7
1	1	1	1	2	3			8	8
	1				3			9	

			4	4		10	10	
8			5	5				
8	7	6	6	6	6		8	
8	7				7	7	8	
			8					

(c) Definitionen (wiederholen):

Gehodetische Länge L(A)

Ausbreitungsfunktion PA

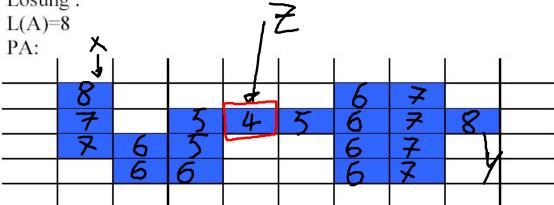
Geodät. Endpunkte

Geodät. Zentrum

Geodät. Radius

Geodät. Formfaktor.

Lösung:



Endpunkt x,y

Zentrum z

Radius r = 4

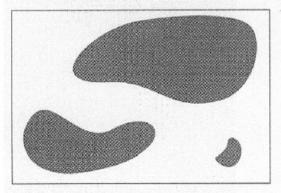
Fläche =19

=> Formfaktor =
$$\frac{\pi \cdot 64}{4 \cdot 19} \approx \frac{16}{19} \pi \approx 2.64$$
 (Kreis =1)

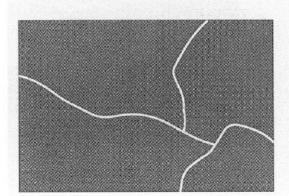
8(x)			75		6	7	
7		5	4(z)	5	6	7	8(y)
7	6	5			6	7	
	6	6			7	7	

Bild (c)

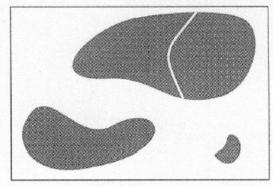
(a) Eingangsbild f.



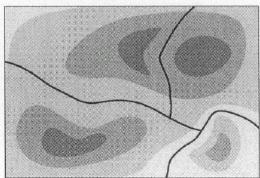
(c) $T_{t \leq h_{min+1}}(f)$.



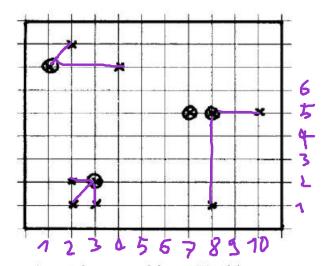
(b) $X_{h_{\min}} = T_{h_{\min}}(f)$.



(d) $X_{h_{\min}+1} = \text{RMIN}_{h_{\min}+1}(f) \cup IZ_{T_{t} \leq h_{\min}+1}(f)(X_{h_{\min}}).$



Lösung zu Aufgabe U23



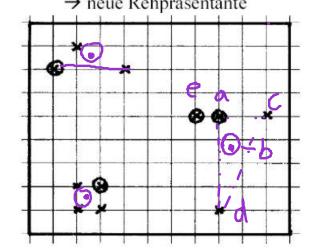
- 1. nächste markierte Nachbarn
- 2. Schwerpunkt jedes Clusters berechnen Rechtes Cluster:

(8;1)

(8;5)

(10;5)

(26;11) \rightarrow (8,667; 3,667)

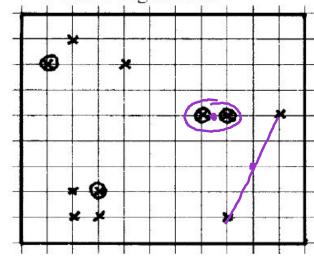


- 3. Umgruppierung
 - die beiden linken Cluster bleiben stabil
 - a liegt n\u00e4her an e als am neuen Zentrum b
 (e,a); (c,d)
- 4. Stabilisierung der Cluster im nächsten Iterationsschritt: (e,a); (c,d)
- *Berechnung der Zuordnung des rechten Außenpunktes c: $d(a_{\mathfrak{C}}) = 2$ (e ist Clusterzentrum des alten Clusters $\{e\}$)

$$b = \frac{1}{3} (a+c+d) = \frac{1}{3} ((0;4)+(2;4)) = (\frac{2}{3};\frac{8}{3}), C = (2;4)$$

$$d(c,b) = \sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^2} = \frac{\sqrt{32}}{3} \approx 1.8856 < 2$$

⇒ C wird b zugeordnet.



Optimalität der entstandenen Clusterung (nach Stabilisierung): Fehlerquadratsumme der beiden rechten Cluster

- im Vorliegenden Endzustand des Algorithmus : 1/4 + 1/4 + 5 + 5 = 10,5
- wenn stattdessen c mit e und a ein Cluster bilden würde:

e a c
$$\left(\frac{4}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{5}{3}\right)^2 + 0 = 4,667 < 10,5!$$

⇒ Verfahren "Läuft sich fest" in lokalem Minimum, welches nicht das globale Min. ist!