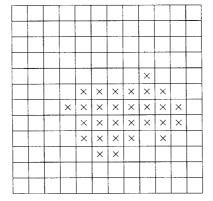
Bildanalyse und Bildverstehen, SoSe 2003 Übungsblatt 1

Bearbeitung durch je 2 Personen gemeinsam erlaubt + erwünscht (bitte nur 1 mal pro Gruppe abgeben).

Abgabe der Lösungen am 15. 05. 2003, bis 09:15 Uhr in der Übung (schriftlich) oder bis zum selben Termin per e-mail an Herrn Zhao, dzhao@informatik.tu-cottbus.de. Lösungen der Programmieraufgabe 5 (Java-, C- oder C++-Quellcode) und der Aufgabe 6 (Bilddateien) bitte nach Möglichkeit per e-mail an Herrn Zhao.

Verbindliches zu den e-mails: Nur je eine e-mail pro Gruppe (spätere Korrektur-e-mails werden nicht mehr akzeptiert). Subject: BB-Uebungsblatt 1. Erste Zeile der e-mail: Namen der beiden AutorInnen und Matrikelnummern. Zweite Zeile: Angabe, ob zusätzlich ein schriftliches Lösungsblatt (mit Lösungen von Theorie-Aufgaben) abgegeben wurde / wird. Quellcode-Dateien und tiff-Dateien bitte als Attachments anfügen, ggf. archiviert.

Aufgabe 1


Ein Diapositiv der Größe 24×36 mm² wird mit 30 μm Rasterflächengröße (Kantenlänge eines quadratischen CCD-Pixels) und drei Farbkanälen digitalisiert. Die Intensitäten der Farbkanäle können Werte von 0 bis 255 annehmen.

- (a) Wieviele Bildzeilen und Bildspalten hat das digitalisierte Bild?
- (b) Aus wievielen Bildpunkten besteht es insgesamt?
- (c) Wieviele Bytes werden zur Speicherung eines Bildpunktes benötigt?
- (d) Wieviele Bytes werden zur Speicherung des gesamten Bildes (ohne Header) benötigt?

4 Punkte

Aufgabe 2

(a) Man betrachte folgenden Ausschnitt eines Binärbildes:

In welchem Punkt (Angabe von Zeilen- und Spaltenindex, Ursprung links oben, Indizierung startet bei 0) beginnt der folgende Kettencode (mit absoluten Richtungsangaben), der das durch × markierte Objekt einmal vollständig umschließt (der Code läuft *innerhalb* des Objektes):

5432310001776535

(b) Welche euklidische Länge hat der folgende Kettencode, d.h. wie lang ist die durch ihn beschriebene Linie?

223322000200076

(c) Wie weit sind Start- und Endpunkt der in (b) codierten Linie voneinander entfernt (euklidischer Abstand)?

Hinweis: Die Definition des Umlaufsinns und der Nullrichtung variiert in der Literatur. Hier wird die Definition gemäß Vorlesungsskript vorausgesetzt.

4 Punkte

(weiter siehe nächste Seite)

Aufgabe 3

In der Bildmatrix **rasterbsp0.htm** (vgl. Aufgabe U3) seien Regionen als Zusammenhangskomponenten von Pixeln mit gleichem Grauwert mittels der *4-Nachbarschaft* definiert. Wieviele Regionen hat dann das Bild? Man erstelle den Adjazenzgraphen der Regionen.

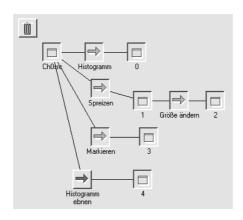
5 Punkte

Aufgabe 4

Berechnen Sie die inverse diskrete Fouriertransformierte F zur Matrix $G = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

4 Punkte

Aufgabe 5


Man schreibe ein Java- (oder C/C++-) Programm, das eine PGM-Datei einliest und daraus eine neue PGM-Datei mit an der Hauptdiagonalen (y=x) gespiegelten Grauwerten erzeugt. Die Übergabeparameter in der Kommandozeile sollen der Name der Eingabedatei und der Name der Ausgabedatei sein. (Kommentare brauchen nicht in die Ausgabedatei übernommen zu werden.)

10 Punkte

Aufgabe 6

- (a) Installieren Sie die Anwendungen IrfanView und DBS-AdOculos (Students' Version) unter Windows (Download von der Übungs-Webseite) und machen Sie sich mit ihnen vertraut (Kurzanleitungen auf der Übungs-Webseite).
- (b) Testen Sie die AdOculos-Funktionen "Invertieren", "Größe ändern", "Ausschnitt" und "Hex-Bild".
- (c) Laden Sie in AdOculos das Bild **ChOsrc.iv**. Erzeugen Sie mit der "Histogramm"-Funktion ein Histogramm (ohne Gitterlinien, ohne zusätzliche Transformation).
- (d) Erzeugen Sie aus dem Originalbild **ChOsrc.iv** mit der Funktion "Spreizen" ein Bild, in dem die Grauwerte zwischen 130 und 140 (einstellen über "Funktion" / "Parameter") auf den vollen Grauwertbereich gespreizt sind. Vergrößern Sie das Ergebnis auf 256×256 Pixel.
- (e) Erzeugen Sie aus dem Originalbild **ChOsrc.iv** mit der Funktion "Markieren" ein Bild, in dem die Grauwerte 135–137 durch Weiß (255) ersetzt sind (ohne Ausblenden).
- (f) Wenden Sie auf das Originalbild **ChOsrc.iv** die Funktion "Histogramm ebnen" an. Speichern Sie die Ergebnisbilder von (c)–(f) jeweils mit der IrfanView-Snapshotfunktion als TIFF-Dateien. Diese sollen als Ergebnis zu den Aufgabenteilen (c)–(f) vorgelegt werden. (Zu den Aufgabenteilen (a) und (b) braucht kein Ergebnis vorgelegt zu werden.)

5 Punkte

