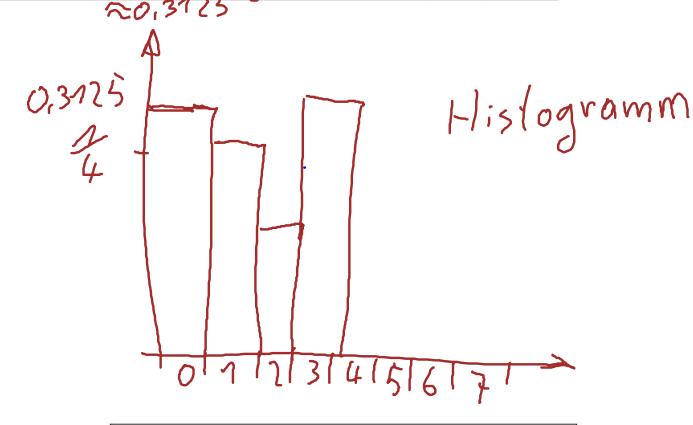
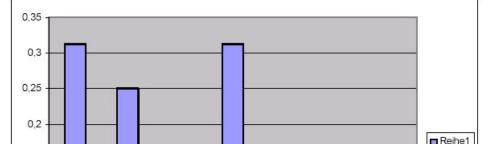
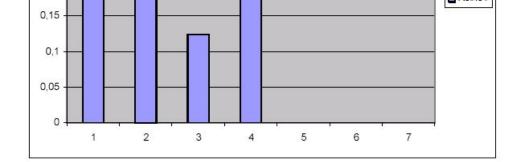
Lösung zu Aufgabe U1:


Bild:


0	0	0	1	2	3	3	5	1	7	7	3
3	2	2	2	2	0	0	0	0	4	5	3
1	2	3	4	5	3	6	7	0	0	0	0
2	2	2	2	2	1	2	2	1	2	2	1


Werte des Blaukanals (3.Komponente der Zahlentripel)

(a)

Intensität	0	1	2	3	4	5	6	7
h_{abs}	5	14	12	2	O	O	O	7
h _{rel}	3/1	6 24	1/8	1/16	0	0	0	0



(b) <u>kumulative Verteilungsfunktion:</u>

$$h_c(p) = \sum_{c=0}^{p} h_{rel}(i)$$
 (p=0;1;2;...;7)

(c) Median:

sortierte Wertefolge = 0 0 0 0 0 1 1 1 1 2 2 3 3 3 3 3

(d) unteres Quartil:

Wert der das kleinste Viertel der Werte vom Rest trennt

(auch: 25% - Quantil, 25-Perzentil)

$$q_{1/4} = O$$

zwischer

Oberes Quartil:

$$q_{\chi} = 3$$

Quartilsabstand: $3 - 0 = 3$ (ein Dispersionsmaß)

Vortei (: Median und Quarti (worden Weniger duvel, Preservi (Preservice)

Secinf (ols Mittee (W. Mnd (old Mittee)

Standartabweichung: $s = \sqrt{s^2} \approx 1,263$

Quartilsabstand: $3 - 0 = 3$

(ein Dispersionsmaß)

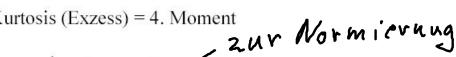
Varianz

(e) Mittelwert

 $\frac{1}{N} \sum_{k=1}^{N} x_i = \frac{1}{10} \cdot (11 + 11 + 15) = \frac{23}{15} \cdot (11 +$

Standartabweichung: $s = \sqrt{s^2} \approx 1,263$ 2 1756 Maß für Abweichung vom Mittelwert

(f) Schiefe = 3. Moment


$$a_{3} = \frac{1}{N \cdot s^{3}} \sum_{i=1}^{N} (x_{i} - \bar{x})^{3}$$

$$= \frac{1}{N \cdot s^{3}} \sum_{i=1}^{N} h_{abs}(k) \cdot (k - \bar{x})^{3} = \frac{1}{32.235} \cdot \left(5 \cdot \left(\frac{23}{76}\right) + 4 \cdot \dots\right)$$

 $a_3 > 0$: Verteilung rechtsschief (linkssteil)

 $a_3 < 0$: Verteilung linksschief (rechtssteil)

$$a_4 = \frac{1}{N \cdot s^4} \sum_{i=1}^{N} (x_i - \overline{x})^4 - 3$$

Kurtosis (Exzess) = 4. Moment
$$a_{4} = \frac{1}{N \cdot s^{4}} \sum_{i=1}^{N} (x_{i} - \overline{x})^{4} - 3$$

$$= \frac{1}{N \cdot s^{4}} \sum_{i=1}^{N} h_{abs}(k) \cdot (k - \overline{x})^{4} - 3 = -1, 735$$

dentlich floicher

$$a_4 > 0$$
: Verteilung hochgipfelig (steiler als NV)

 $a_4 \le 0$: Verteilung tiefgipfelig (flacher als NV)

(g) Entropie

$$H = -\sum_{k=0}^{Max} h_{rel}(k) \bullet ld \ h_{rel}(k)$$

mit
$$ldx = \log_2 x = \frac{\ln x}{\ln 2} \approx \frac{\ln x}{0.69315} \approx 1,4427 \cdot \ln x$$

Je größer H, desto "gleichmäßiger" die Verteilung

H = mittl. Entscheidungsgehalt pro Bildpunkt

= Informationsgehalt i.S. von Shánnon (signaltheoretisch /statistisch)

= mittl. a-priori - Unsicherheit pro Bildpunkt

Beachte: H berücksichtigt keine Korrelationen zwischen benachbarten Bildpunkten!

homogenes Bild:
$$H = -\sum_{k=0}^{Max} 1 \cdot ld1 = 0$$
 (= min. Wert)

Bild mit gleichverteilten Grauwerten:

$$h_{rel}(h) = \frac{1}{4}$$
 für h = 0;1;2;3 \Rightarrow

$$H = -\sum_{k=0}^{Max} \frac{1}{4} \cdot ld \frac{1}{4} = -(-2) \quad (= \text{max. Wert von } H \text{ bei 4 Graustufen})$$

in unserem Beispiel: =
$$\frac{1}{16} \cdot (\log_2 \frac{5}{16} + \frac{1}{4} \cdot (\log_2 \frac{7}{4} + \frac{1}{8} \cdot (\log_2 \frac{8}{8}) + \frac{5}{16} \cdot (\log_2 \frac{5}{16})$$
= 1.924

(h) Anisotropiekoeffizient:

$$H = -\frac{1}{H} \sum_{k=0}^{M} h_{rel}(k) \bullet ld \ h_{rel}(k)$$
, mit $M =$ Median der Grauwertvert.
= Maß für die Symmetrie des Histogramms.

Für symmetrische Histogr. ist $\alpha \approx \frac{1/2 H}{H} = 0.5$

in unserem Bsp.:

$$\alpha = -\frac{5}{1,924} \cdot \left(\frac{5}{76}ld\frac{5}{76} + \frac{1}{4}ld\frac{1}{4}\right)$$

$$= 0,5^{-3}24$$

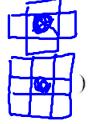
(i) Paar-Grauwertmatrix bzgl. Relation ζ:

$$M\varsigma = (a_{jk})$$
 j, k Grauwerte
mit $a_{jk} = \{(u, v) \mid \text{Grauwert}(u) = j \land \text{Grauwert}(v) = k \land u \varsigma v \},$
 $\varsigma = \text{"rechter Nachbar"}$

Verwendung u.a. in der Texturanalyse.

Was sagen die Werte in der Hauptdiagonale aus?

→ Größen der homogenen Bildbereiche!


Eintrag an Position (j,k), $j\neq k$:

 \rightarrow Maß für Länge der Grenze zwischen Grauwertbereichen j und k

Für $\boldsymbol{\zeta}$ nimmt man auch:

(innerer, oberer, unterer Nachbar; Nachbar schlechthin bzgl. 4-Nachbarschaft

bzgl. 8-Nachbarschaft

