
Developing Multiagent SystemsDeveloping Multiagent Systems
with AgentToolwith AgentTool

Artificial Life and Multiagent Systems
Prof. Dr. Winfried Kurth
SS 2003

George Radev Georgiev
Erasmus student

Introduction

The project AgentTool is developed by Scott A. DeLoach and
Mark Wood at the Department of Electrical and Computer
Engineering of Air Force Institute of Technology

AgentTool is an IDE based on Multiagent System Engineering
(MaSE) methodology that implements the following
objectives for heterogeneous agent management:

• Analyzing

• Designing

• Developing

Model Abstraction

AgentTool is a flexible and powerful agent interaction
framework where every agent is a specialization of Objects

• Object is the fundamental element in the environment;

• All Objects correspond to each other via conversations;

• Role of an Object is description of the expected functionality;

• Task is the decomposition of the role

This abstraction allows us to use object-oriented theory for the
specification and design of multiagent systems;
It is also more convenient for analyzing

M
u

lt
ia

g
e
n

t
S

y
st

e
m

s
E

n
g

in
e
e
ri

n
g

M

e
th

o
d

o
lo

g
y A
n
al

ys
is

D
es

ig
n

Capturing
Goals

Applying
Use Cases

Refining
Roles

Creating
Agent Classes

Constructing
Conversations

Assembling
Agent Classes

System Design

Requirements

Use Cases

Goal Hierarchy

Sequence Diagrams

Concurrent Tasks

Agent Architecture

Roles

Conversations

Deployment Diagrams

Agent Classes

Capturing Goals

• Two steps of goal capturing:

identifying goals
and

structuring goals

• Creating Goal hierarchy diagram from
the system objectives.

• It is necessary that sub-goals satisfy parent goals.

[SAMPLE]

Applying Uses Cases

• This step translates goals into roles and
associated tasks.

• Uses Cases depend on system requirements and
describe a sequence of events for the system behavior.

• Uses Cases are restructured in sequence diagrams

[SAMPLE]

Refining Roles

• The third step in MaSE is making sure that we have
identified all the necessary roles and developing the
tasks that define role behavior and communication
patterns

• Each goal is usually mapped to a single role but it is
also useful to combine multiple goals in a single role for
convenience and/or efficiency

• Decisions are based on standard software engineering
concepts such as functional, temporal, procedural,
communicational, sequential cohesion

• Once a role is defined, a task is created to provide a
high-level description what role must do

Creating Agent Classes

• Each goal from the hierarchy is associated with a role
and with a class that is responsible for it

• Agent classes are roles identified and
documented in an Agent Class Diagram

[SAMPLE]

Constructing Conversations

• Agents coordinate their actions via conversations to
accomplish individual or common goals

• A conversation defines a coordination protocol
between two participating agents in a
Communication Class Diagram:

-> initiator and responder

• Initiator always sends the first message.

• Similar to concurrent task concept

• This step is often combined with a succeeding one.

Assembling Agent Classes

• In this step we implement the internal agent class
architecture (in OO terminology – methods)
complying with actions specified in the conversations

• All actions specified in the tasks and conversations
must be mapped to the functionality of the agent
architecture

• Object-oriented theory is very suitable for
agent assembling

System Design

• The final step of MaSE defines the configuration
of the actual system

• Here the following undefined implementation
decisions are made:

ü programming language

ü communication framework

ü system requirements, etc.

M
u

lt
ia

g
e
n

t
S

y
st

e
m

s
E

n
g

in
e
e
ri

n
g

M

e
th

o
d

o
lo

g
y A
n
al

ys
is

D
es

ig
n

Capturing
Goals

Applying
Use Cases

Refining
Roles

Creating
Agent Classes

Constructing
Conversations

Assembling
Agent Classes

System Design

Requirements

Use Cases

Goal Hierarchy

Sequence Diagrams

Concurrent Tasks

Agent Architecture

Roles

Conversations

Deployment Diagrams

Agent Classes

CROBOTS - Conceptual Scheme

Developed by Tom Poindexter in December, 1985
Illinois State University
http://www.nyx.net/~tpoindex/index.html

CROBOTS is a programming game, where you write a robot
control program in C. Your robot's mission is to seek out and
destroy other robots, each running different programs.

Variants of CROBOTS:
C++ Robots
CRobots32
TCLRobots
PRobots
PCRobots
AT-Robots
Giavamachia - Java Version
CeeBot - http://www.epsitec.ch/

CROBOTS - API

All robots are executed in a cooperative non-preemptive
multitasking environment in the same battlefield

Common functions:
void movement(int speed, int angle);
void get_local_map(char far *buffer);
robotID scan(int angle,int res,int *range);
bool shoot(int angle,int range);
int get_shell_status(void);
void getxy(int *x,int *y);
int damage(void);
int speed(void);

Questions

