Konstruktion des Voronoi-Diagramms

Untere Schranke für den Zeitaufwand:

für *n*-elementige Punktmenge jedenfalls $\Omega(n \log n)$, da mit VD die konvexe Hülle in linearer Zeit bestimmbar.

Wenn man die *n* Punkte nach einer Koordinate sortiert hat, lässt sich die konvexe Hülle anschließend in linearer Zeit konstruieren

Das Voronoi-Diagramm ist "schwieriger":

Satz:

Angenommen, die *n* Punkte in S sind bereits nach aufsteigenden *x*-Koordinaten sortiert. Dann erfordert die Konstruktion des Voronoi-Diagramms von S immer noch $\Omega(n \log n)$ Zeit.

Beweis: s. Klein 1997, S. 270 f.

Naives Verfahren:

jede der *n* Voronoi-Regionen als Schnitt von *n*–1 Halbebenen berechnen

 \Rightarrow jede Region in Zeit $O(n^2)$, oder effizienter in Zeit $O(n \log n)$

 \Rightarrow gesamtes VD in Zeit $O(n^3)$ bzw. $O(n^2 \log n)$

Wenn Delaunay-Triangulierung vorhanden, VD in Zeit O(n) konstruierbar (und umgekehrt): Konstruktion des dualen Graphen

erstes effizienteres Verfahren konstruiert die Delaunay-Triangulierung, und zwar inkrementell (Hinzufügen von Punkten zu S)

dazu zunächst Benennungen:

- Kante e = $\overline{p_i p_j}$ heißt eine *unzulässige Kante*, falls min $\alpha_i < \min_{1 \le i \le 6} \beta_i$
- Kante unzulässig, falls lokal Vergrößerung des kleinsten Winkels durch Flippen dieser Kante

(Hinrichs 2002)

man nennt dies auch einen "Lawson-Flip".

Die DT ist dadurch charakterisiert, dass alle Kanten zulässig sind.

 Es ist nicht notwendig, α₁, ..., α₆, β₁, ..., β₆ zu berechnen, um zu überprüfen, ob eine Kante zulässig ist ⇒
 Kriterium zur Überprüfung:

Die Kante $\overline{p_i p_j}$ sei inzident zu den Dreiecken $p_i p_j p_k$ und $p_i p_j p_l$, und C sei der Kreis durch p_i , p_j und p_k . Die Kante $\overline{p_i p_j}$ ist unzulässig genau dann, wenn der Punkt p_l im Innern von C liegt. Bilden die Punkte p_i , p_j , p_k und p_l ein konvexes Viereck und liegen sie nicht auf einem gemeinsamen Kreis, so ist entweder $\overline{p_i p_j}$ oder $\overline{p_k p_l}$ eine unzulässige Kante.

(Beweis s. Hinrichs 2002)

Randomisierter, inkrementeller Algorithmus zur Berechnung der DT (nach Hinrichs 2002):

 Beginne mit einem großen, die Punktmenge S enthaltenden Dreieck p₋₁p₋₂p₋₃ und berechne die Delaunay-Triangulierung von Ω ∪ S, wobei Ω := {p₋₁,p₋₂,p₋₃}:

- Nach Berechnung der Delaunay-Triangulierung von Ω ∪ S werden p₋₁, p₋₂, p₋₃ mit allen inzidenten Kanten entfernt → p₋₁, p₋₂, p₋₃ müssen weit genug entfernt von den Punkten aus S gewählt werden, damit sie keine Dreiecke in der Delaunay-Triangulierung von S zerstören. Insbesondere dürfen sie nicht innerhalb eines durch drei Punkte aus S definierten Kreises liegen.
- Algorithmus fügt Punkte in einer Zufallsreihenfolge ein und erhält eine Delaunay-Triangulierung der gegenwärtigen Punktmenge aufrecht.

- Hinzufügen des Punktes pr:
 - Bestimme zunächst das Dreieck der gegenwärtigen Triangulierung, das den Punkt pr enthält, und füge Kanten von pr zu den Eckpunkten dieses Dreiecks ein.
 - Liegt p_r auf einer Kante e der Triangulierung, so füge Kanten von p_r zu den der Kante e gegenüberliegenden Eckpunkten der beiden in e aneinandergrenzenden Dreiecke ein:

- → Resultierende Triangulierung ist aber nicht notwendigerweise eine Delaunay-Triangulierung, da durch Hinzufügen von p_r einige der existierenden Kanten unzulässig werden können.
- Behebung des Problems durch Aufruf einer Prozedur LegalizeEdge f
 ür jede potentiell unzul
 ässige Kante: LegalizeEdge ersetzt mit Hilfe von Kantenflips unzul
 ässige Kanten durch zul
 ässige.

Top-Down-Beschreibung des Algorithmus

(hier keine Behandlung von Spezialfällen wie den Rand-Kanten; s. dazu Hinrichs 2002) :

DelaunayTriangulation(S)

Eingabe: Eine Menge S von n Punkten in der Ebene.

Ausgabe: Eine Delaunay-Triangulierung von S.

- Seien p₋₁, p₋₂ und p₋₃ drei passende Punkte, so daß S im Dreieck p₋₁p₋₂p₋₃ enthalten ist.
- Initialisiere T als die Triangulierung, die aus dem einzelnen Dreieck p₋₁p₋₂p₋₃ besteht.
- Bestimme eine Zufallspermutation p₁, p₂, ..., p_n der Elemente von S.
- 4. for r := 1 to n do
- 5. Finde das Dreieck $p_i p_j p_k \in T$, das p_r enthält.
- 6. if p_r liegt im Inneren des Dreiecks $p_i p_j p_k$ then
- 7. Füge Kanten von p_r zu den Eckpunkten des Dreiecks $p_i p_j p_k$ ein \Rightarrow Aufteilung von $p_i p_j p_k$ in drei Dreiecke.

8. LegalizeEdge(
$$p_r, \overline{p_i p_j}, T$$
)

9. LegalizeEdge(
$$p_r$$
, $\overline{p_j p_k}$, T)

10. LegalizeEdge(p_r , $\overline{p_k p_i}$, T)

else { p_r liegt auf einer Kante von $p_i p_i p_k$, z.B. auf $\overline{p_i p_i}$ }

- Füge Kanten von p_r zu p_k und dem dritten Eckpunkt p_i des anderen an p_ip_j angrenzenden Dreiecks ein, wodurch die beiden an p_ip_j angrenzenden Dreiecke in vier Dreiecke aufgeteilt werden.
- 12. LegalizeEdge(p_r , $\overline{p_i p_1}$, T)
- 13. LegalizeEdge(p_r , $\overline{p_l p_j}$, T)
- 14. LegalizeEdge($p_r, \overline{p_j p_k}, T$)
- 15. LegalizeEdge(p_r , $\overline{p_k p_i}$, T)
- 16. Entferne p_{-1} , p_{-2} , p_{-3} mit allen ihren inzidenten Kanten aus T.

17. return au

- Welche Kanten können durch das Einfügen von Punkt pr unzulässig werden?
- Beobachtung: Zuvor zulässige Kante pipj kann durch Einfügen von prunzulässig werden, falls eines der beiden zu pipj inzidenten Dreiecke sich ändert.

⇒ Nur die Kanten neuer Dreiecke müssen überprüft werden.

 Überprüfung durch Prozedur LegalizeEdge, die Kanten testet und möglicherweise Kantenflips durchführt. Nach einem Kantenflip können andere Kanten unzulässig werden → LegalizeEdge ruft sich rekursiv für solch potentiell unzulässigen Kanten auf.

Solange der Umkreis eines angrenzenden Dreiecks den neuen Punkt enthält, werden *edge flips* ausgeführt

LegalizeEdge(p_r , $\overline{p_i p_j}$, T)

 p_r ist der eingefügte Punkt und $\overline{p_i p_j}$ ist die Kante von T, die eventuell geflippt werden muß.

- 1. if pipi ist unzulässig then
- 2. Sei $p_i p_i p_k$ das zu $p_r p_i p_i$ entlang $\overline{p_i p_i}$ benachbarte Dreieck.
- 3. Flippe $\overline{\mathbf{p}_i \mathbf{p}_i}$, d.h. ersetze $\overline{\mathbf{p}_i \mathbf{p}_i}$ durch $\overline{\mathbf{p}_r \mathbf{p}_k}$.
- 4. LegalizeEdge(p_r , $\overline{p_i p_k}$, T)
- 5. LegalizeEdge(p_r , $\overline{p_k p_j}$, T)

- Algorithmus ist korrekt, da jede unzulässig gewordene Kante getestet wird:
 - Jede neue Kante e ist zulässig und muß daher nicht mehr getestet werden.
 - Eine Kante kann nur durch Änderung eines der inzidenten Dreiecke unzulässig werden.
- Algorithmus terminiert, da in jeder Iteration der Winkelvektor größer wird und es nur endlich viele Triangulierungen von S gibt.

jede während des Algorithmus neu erzeugte Kante ist eine Kante der DT

Effizienz wird gesteigert durch geeignete Datenstruktur:

- Auffinden des den Punkt p_r enthaltenden Dreiecks durch eine Punktlokalisierungsstruktur D, die parallel zur Delaunay-Triangulierung aufgebaut wird:
 - \mathcal{D} ist ein gerichteter azyklischer Graph.
 - Die Blätter von D entsprechen den Dreiecken der gegenwärtigen Triangulierung T.
 - Jedes Blatt von D wird durch einen Doppelzeiger mit dem entsprechenden Dreieck in T verkettet.
 - Interne Knoten von D entsprechen Dreiecken, die zu einem früheren Zeitpunkt in der Triangulierung enthalten waren, aber später zerstört wurden.
- Initialisierung von D in Schritt 2 von DelaunayTriangulation mit einem einzelnen Blattknoten, der dem Dreieck p₋₁p₋₂p₋₃ entspricht.

- Aufteilung eines Dreiecks p_ip_jp_k in 3 (oder 2) neue Dreiecke nach Einfügen eines Punktes p_r:
 - Füge 3 (oder 2) neue Blätter der Suchstruktur D hinzu.
 - Das dem Dreieck p_ip_jp_k entsprechende Blatt von D wird zu einem internen Knoten mit Zeigern auf die 3 (oder 2) neuen Blätter.
- Bei einem Kantenflip werden zwei Dreiecke p_ip_jp_k und p_ip_jp_l durch die Dreiecke p_ip_kp_l und p_jp_kp_l ersetzt:
 - Erzeuge in D Blätter für die neuen Dreiecke $p_i p_k p_l$ und $p_j p_k p_l$.
 - Die den Dreiecken p_ip_jp_k und p_ip_jp_l entsprechenden Blätter werden zu internen Knoten mit jeweils 2 Zeigern auf die 2 neuen Blätter.

Die Datenstruktur heißt auch *History* oder *Delaunay-DAG* (directed acyclic graph).

Wenn diese Struktur vorliegt, ist der Suchaufwand beim Einfügen eines neuen Knotens linear zur Anzahl Knoten auf dem Suchpfad, also "niedrig":

- Lokalisierung des nächsten der Triangulierung hinzuzufügenden Punktes pr:
 - Beginnend am Wurzelknoten von D, der dem Dreieck p₋₁p₋₂p₋₃ entspricht, überprüfe die 3 Kinder der Wurzel, um festzustellen, in welchem Dreieck p_r liegt, und steige zu dem entsprechenden Kindknoten hinab.
 - Wiederhole den Vorgang mit den Kindern dieses Knotens usw., bis ein Blatt von D erreicht wird. Dieses Blatt entspricht einem Dreieck in der gegenwärtigen Triangulierung.

Beispiel:

Man kann zeigen: Die *erwartete* Anzahl der Dreiecke, die durch den Algorithmus erzeugt wird, beträgt höchstens 9n + 1. (Beweis: s. Hinrichs 2002)

Satz:

Algorithmus *DelaunayTriangulation* benötigt zur Berechnung einer Delaunay-Triangulierung einer Menge S von n Punkten in der Ebene O(n·log n) erwartete Zeit und hat einen erwarteten Speicherplatzbedarf von O(n).

Beweis:

M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: Computational Geometry: Algorithms and Applications, Abschnitt 9.4.

Jedoch: worst case - Verhalten ungünstiger

jedes inkrementelle Konstruktionsverfahren für das VD benötigt im ungünstigsten Fall $\Omega(n^2)$ viele Schritte:

(Klein 1997) Punkte auf *x*-Achse seien bereits eingefügt, Punkte auf *y*-Achse sollen von oben nach unten eingefügt werden \Rightarrow VR des jeweils letzten Punktes hat mit denen der unteren Punkte gem. Kanten, diese müssen alle wieder entfernt werden beim Neueinfügen. besseres Verfahren (auch im worst case):

Sweep-Verfahren

Idee: Bewege Sweep–line von links nach rechts über S, berechne sukzessive VD(S)Problem: VR(p) beginnt schon vor Ort p

Beobachtung:

Es gibt ein Gebiet G links der Sweepline L, für das das VD bereits festliegt: $G = \{v \in \mathbb{R}^2 : |\overline{vp}| \le Abstand(v, L) \text{ für ein } p \in S\}$ für $S = \{p\}$: Inneres der Parabel B(p, L): $(p.x - v.x)^2 + (p.y - v.y)^2 \le v.x - L.x$ i.allg. wird G durch Folge W ("Wellenfront") von Parabelbögen ("Wellenstücken") P(p, q, r) begrenzt

Kein Punkt rechts der Sweep-Geraden kann das Gebiet zur Linken der Parabel beeinflussen:

"Wellenfront" *W*: Rand der Voronoi-Region der Geraden *L*

Die Wellenfront wird manchmal auch "beach line" genannt (Gärtner 1996).

 $aktive\ Punkte = {\rm die}\ {\rm Punkte}\ q$ ausS, die gerade ein WellenstückP(p,q,r) zuW beitragen

Beobachtung: Schnittpunkt zweier in W benachbarter Wellenstücke (z.B. Teile von B(p, L) und B(q, L)) rückt längs des geraden Bisektors B(p, q) vor.

 $\begin{aligned} Spike \; s(p,q) \\ = & \mathsf{Verlängerung} \; \mathsf{des} \; \mathsf{Bisektors} \; B(p,q) \; \mathsf{jenseits} \; W; \; p, \; q \; \mathsf{aktiv} \end{aligned}$

Beobachtung: Schnittpunkte auf W benachbarter Spikes sind potentielle Voronoi–Knoten

 \rightarrow als zukünftige Ereignisse vormerken

Beobachtung: W ist zusammenhängend und y-monoton \rightarrow verwalte Wellenfront in der Y-Struktur SSS, Wellenstücke P(p, q, r) nach y-Koordinaten geordnet + Verweise auf Spikes: oberhalb P(p, q, r): s(p, q), unterhalb: s(q, r)

Beobachtung: $VR(L,S\cup\{L\})$ hat O(n) viele Ecken $\rightarrow |W| = O(n)$

Zwei Arten von Ereignissen:

1. site event: (*Punkt–Ereignis*)

Sweep-line L trifft neuen Punkt v aus S

→ Bisektor B(v, L) zunächst degenerierte Parabel \overline{wv} mit w = Schnitt von W mit Horizontalgerade durch v, \overline{wv} öffnet sich beim Fortschreiten von L

Sei $q \in S$ (aktiver) Punkt mit $w \in P(p,q,r) \subseteq W$.

P(p,q,r) aufspalten in P(p,q,v), P(q,v,q), P(v,q,r)

Bei Fortschreiten von L über v hinweg

entstehen 2 neue Spikes $s(q,v) = \overline{w?}$, $s(v,q) = \overline{w?}$ aktualisiere Schnittpunkte benachbarter Spikes in ES

<u>Spezialfall</u>: w liegt auf einem Spike $s(p,q) = \overline{y?}$ $\rightarrow w$ ist Voronoiknoten. Ausgabe w, (y,w)neues Wellenstück P(p,v,q) einfügen, es entstehen 2 neue Spikes s(p,v), s(v,q)Grenzen von P(p,v,q) laufen entlang s(p,v), s(v,q)

2. circle event (*spike–Ereignis*)

Wellenstück P(p,q,r) aus W trifft auf den Schnittpunkt z seiner beiden Spikes $s(p,q) = \overline{x?}$ und $s(q,r) = \overline{y?}$ und verschwindet d.h. L ist rechte Tangente an Kreis $\odot(p,q,r)$ mit Zentrum $z \rightarrow z$ ist Voronoiknoten. Ausgabe z, (x,z), (y,z)lösche P(p,q,r) mit s(p,q), s(q,r) aus SSSlösche weitere Schnittpunkte mit s(p,q), s(q,r) aus ESberechne neuen Spike s(p,r)aktualisiere SSS-Vorgänger P(l,p,q) zu P(l,p,r)aktualisiere SSS-Nachfolger P(q,r,t) zu P(p,r,t)berechne Schnittpunkte jetzt benachbarter Spikes $\rightarrow ES$ **Bemerkung:** Zeitpunkt des Spike-Ereignis: $z.x + |\overline{xz}|$

Bemerkung: Weitere Ereignisse gibt es nicht:

Solange die Spikes sich nicht schneiden und keine neuen Punkte getroffen werden, laufen die Wellenstücke ungehindert zwischen ihren Spikes weiter.

$\underline{\mathbf{Ereignisstruktur}} \ ES$

enthält (x-) Koordinaten der Punkte aus S bzw. der Schnittpunkte in SSS benachbarter Spikes und für Schnittpunkte $z = s(p,q) \cap s(q,r)$: Verweis auf Wellenstück P(p,q,r) in SSS Operationen: deletemin, insert, delete, empty \rightarrow priority queue, z.B. als bal. binärer Suchbaum

Sweep–Status–Struktur SSS

Operationen: *insert*, *delete*, *lookup* für Wellenstücke P nach y-Koordinaten \rightarrow in Zeit $O(\log |SSS|)$ z.B. bei bal. bin. Suchbaum

Der Algorithmus:

initialisiere SSS, ES x-sortiere die $p \in S$, füge in ES als site events ein while ! ES.empty() do $E \leftarrow ES.deletemin();$ // get next event Fall 1: E ist Punkt-Ereignis: ... (s.o.) Fall 2: E ist Spike-Ereignis: ... (s.o.) od; for alle in SSS verbliebenen Wellenstücke P(p, q, r):

Ausgabe s(p,q), s(q,r) als einseitig unbeschränkte Voronoikanten

Komplexität des Algorithmus:

 $\left|SSS\right|=O(n) \text{ s.o.}$

 $\left| ES \right| = O(n)$ falls nur Schnittpunkte auf W benachbarter Spikes in ES gehalten werden

 \rightarrow je Ereignisbearbeitung Zeit $O(\log n)$

 $\exists O(n)$ viele Ereignisse, da jedes ≥ 1 Voronoiknoten/–kante ergibt

 \rightarrow gesamt Zeit $O(n \log n)$

(Keßler 1998)

\Rightarrow

Satz:

Das Voronoi-Diagramm von n Punkten in der Ebene lässt sich mit dem Sweep-Verfahren im *worst case* in der Zeit $O(n \log n)$ und mit linearem Speicherplatz berechnen, und das ist optimal.

Dieses Sweep-Verfahren hat den Namen "Fortune's Sweep".

Bemerkung:

Mit größenordnungsmäßig ebenso günstigem Aufwand lässt sich das VD auch mit dem *divide-and-conquer*-Ansatz bestimmen (Shamos 1975).

Prinzip: Teilung der Punktmenge in 2 Teilmengen längs einer Splitgeraden, Mischen der beiden VD der Teilmengen (s. Klein 1997).

Verallgemeinerungen des Voronoi-Diagramms

Zugrundelegung anderer Distanzfunktionen

- Metriken d_k (vgl. Kap. 2.7), insbes. Manhattan-Distanz d_1
- nochmalige Verallgemeinerung: *konvexe Distanzfunktionen*

Sei *C* eine kompakte, konvexe Menge in der Ebene, die den Nullpunkt im Inneren enthält (0 = "Zentrum" von C). Abstand von *p* nach *q*:

- verschiebe C um den Vektor p (dann wird p zum Zentrum)
- bilde Strahl von p durch q
- dieser schneidet den Rand von C in genau einem Punkt q'
- setze d_C (p, q) = |pq| / |pq'| = Faktor, um den die nach p verschobene Kopie von C skaliert werden müsste, damit ihr Rand den Punkt q enthält
- zusätzlich sei $d_C(p, p) = 0$.

 d_C heißt konvexe Distanzfunktion,

erfüllt pos. Definitheit und Dreiecksungleichung. Symmetrie erfüllt $\Leftrightarrow C$ symmetrisch zum Nullpunkt.

Der Einheitskreis von d_C , d.h. { x | d_C (x, 0) \leq 1}, ist C.

 d_C ist translationsinvariant.

 d_k -Metriken sind Spezialfälle von d_C .

Definition des *Bisektors* zweier Punkte bzgl. d_C : analog zum euklidischen Fall (Menge aller Punkte mit gleichem Abstand zu beiden Punkten)

Einheitskreis (i) und Bisektoren (ii, iii) der Manhattan-Metrik:

Der "pathologische Fall" des flächigen Bisektors (iii) kann nur auftreten, wenn der Einheitskreis *C* stellenweise abgeplattet ist (Geradenstücke in seinem Rand enthält)

Def.: C streng konvex : $\Leftrightarrow \partial C$ enthält kein Geradenstück

für kompakte, streng konvexe Mengen C in der Ebene mit dem Nullpunkt im Inneren ist jeder Bisektor bzgl. d_C homöomorph zu einer Geraden.

(Beweis: s. Klein 1997, S. 243 f.)

Voronoi-Region von *p* in einer Punktmenge *S* bzgl. d_C : Schnitt aller offenen Gebiete, die vom Bisektor zwischen *p* und *q* begrenzt werden und *p* enthalten, wobei *q* alle Punkte aus $S \setminus \{p\}$ durchläuft. (= analog zum euklidischen Fall)

Achtung: verallgemeinerte Voronoi-Regionen sind i.allg. nicht konvex (da die Bisektoren keine Geraden sind).

Aber es gilt:

Jede Voronoi-Region bzgl. d_c , *C* streng konvex, ist sternförmig und enthält *p* in ihrem Kern.

(\Rightarrow sie ist insbesondere zusammenhängend.)

(Beweis: s. Klein 1997, S. 245.)

Ferner gilt wie im euklidischen Fall:

Zwei Voronoi-Regionen bzgl. derselben Punktmenge S und derselben streng konvexen Distanzfunktion haben höchstens eine gemeinsame Voronoi-Kante.

(Beweis: s. Klein 1997, S. 247 f.)

Es gibt andere Metriken, die nicht als konvexe Distanzfunktionen dargestellt werden können. Beispiel:

die Karlsruhe-Metrik (Entfernung im Straßensystem von Karlsruhe):

(aus Klein 1997)

die Karlsruhe-Metrik ist nicht translationsinvariant (siehe Abb. rechts: $d(p', q') \neq d(p, q)$)

Ein Voronoi-Diagramm von 8 Punkten in der Karlsruhe-Metrik:

Voronoi-Diagramme k-ter Ordnung

Sei *S* Punktmenge und $B \subseteq S$. Voronoi-Region VR(B) = Menge aller Punkte, die *jedem* Punkt in *B* näher liegen als einem Punkt in $S \setminus B$. Sei |B| = k, dann spricht man von VR der *Ordnung k*.

Für einelementiges *B*: herkömmliche VR.

Eine VR 2. Ordnung kann aus VR erster Ordnung konstruiert werden:

 $VR(\{p_1, p_2\}, S) = VR(p_1, S \setminus \{p_2\}) \cap VR(p_2, S \setminus \{p_1\}).$

(*VR* heißt hier *G*, *S* heißt *A*) (aus Schmitt, Deussen & Kreeb 1996)

Alle Punkte in der doppelt schraffierten Fläche liegen näher zu p_1 und p_2 als zu irgendeinem anderen Punkt aus S.

Beispiel für ein Voronoi-Diagramm 2. Ordnung zu einer Punktmenge:

(aus Schmitt, Deussen & Kreeb 1996)

Das Power-Diagramm

"Power-Distanz" eines Punktes x zu einem Kreis (bzw. einer Kugel) $B_{c,p}$ (mit Mittelpunkt c und Radius p):

$$d_{pow}(x, B_{c,p}) = d^2(x, c) - p^2$$

- x im Inneren von $B_{c,p}$: Power-Distanz negativ
- x im Äußeren von $B_{c,p}$: Power-Distanz positiv

keine Metrik im math. strengen Sinne

Power-Diagramm:

gegeben: Menge S von *gewichteten* Punkten (c, p^2)

- ein Punkt *c* mit Gewicht p^2 wird durch einen Kreis $B_{c,p}$

mit Mittelpunkt *c* und Radius *p* dargestellt

jede Zelle eines Punktes (c, p^2) des Power-Diagramms besteht aus allen Punkten der Ebene (bzw. des Raumes), für die $B_{c,p}$ nächster Nachbar bzgl. der Power-Distanz ist.

Power-Diagramm von 4 gewichteten Punkten

 \Rightarrow "gewichtete Form" des VD

Anwendung:

Rekonstruktion von Oberflächen aus 3D-Punktwolken (z.B. Laserscannerdaten)

"Power Crust"-Verfahren von Amenta, Choi & Kolluri (2001)

siehe http://www.cs.utexas.edu/users/amenta/powercrust s.a. Referat von A. Christan,

http://www-gs.informatik.tu-cottbus.de/~wwwgs/a3d_christan.pdf

zusätzlich zur Oberfläche wird die Mittelachse des gescannten Objekts approximiert (Ort der Mittelpunkte aller maximalen Kugeln, die in das Objekt passen) (a)

prinzipieller Ablauf des Verfahrens:

 Von der Menge S der gescannten Punkte wird das 3-D Voronoi-Diagramm konstruiert (b) (ein extremaler Knoten des VD mit maximaler Kugel ist eingezeichnet)

- bei dichter Punktwolke sind die Zellen des VD lang und dünn und senkrecht zur Oberfläche orientiert

• Teilmengen der Knoten des VD: innere und äußere *Pole* - Pole eines Punktes *s*: am weitesten entfernte Voronoi-Knoten im Inneren und im Äußeren der approximierten Menge (Labelling-Algorithmus legt fest, welche Knoten des VD als "innen" und welche als "außen" angesehen werden) Innere und äußere *Pol-Kugeln*: Kugeln um die Pole, welche die Punkte der Menge S gerade berühren (maximale Kugeln mit leerem Inneren) (c)

- die Radien der Pol-Kugeln definieren Gewichte der Pole
- die Menge der Mittelpunkte der Pol-Kugeln approximiert die Mittelachse der Menge *S*
- Approximation der Rücktransformation von der Mittelachse zur gesuchten Menge (Objektoberfläche): durch das Power-Diagramm der gewichteten Pole (d)

zu inneren Polen gehören innere Zellen

- \Rightarrow Grenze zwischen inneren und äußeren Zellen
 - = "power crust" = Approximation der Oberfläche (Output)

zusätzlicher Output: Verknüpfung der inneren Pole entspr. der Nachbarschaft ihrer Power-Diagramm-Zellen = Approximation der Mittelachse des Objektes (siehe (e)) Beispiel:

links: lasergenerierte Punktwolke Mitte: mit dem Verfahren erzeugtes polygonales Modell ("wasserdicht") rechts: approximierte Mittelachsenstruktur (Skelettierung)

(aus Amenta, Choi & Kolluri 2001, http s. oben)

Voronoi-Diagramme von Liniensegmenten

bisher nur punktförmige Objekte zugrundegelegt \rightarrow Einflusszonen auch für andere Objekte denkbar

hier: *Liniensegmente* (Strecken) Distanz sei gegeben durch die euklidische Metrik

Abstand Punkt x – Strecke s: $d(x, s) = \min \{ d(x, y) | y \in s \}$

Minimum wird am *x* nächstgelegenen Punkt der Strecke angenommen – 2 Möglichkeiten:

Abstand Punkt – Gerade: nur Fall (i) tritt ein.

Bisektor von Punkt und Gerade:

hier spezielle Lage:

 $p: (0; a), g: y=0 \implies \text{Bisektor} \{ (x, y) \mid y = x^2/2a + a/2 \}.$

Bisektor Gerade – Gerade: Gerade (Winkelhalbierende)

Bisektor Punkt – Strecke:

Bisektor zweier Strecken:

(Keßler 1998)

<u>Bisektor B(s, s')</u> zweier disjunkter Liniensegmente s, s'setzt sich stetig zusammen aus max. 7 Teilstücken: Parabeln, Winkelhalbierenden, und Mittelsenkrechten; Analog: Halbebene $H(s, s') = \{p \in \mathbb{R}^2 : dist(p, s) < dist(p, s')\}$ <u>Voronoi–Region</u> VR(s) eines Liniensegmentes $s \in S$:

$$VR(s) = \mathop{\cap}\limits_{s' \in S \backslash \{s\}} H(s,s')$$

Die VR von Strecken sind in einem verallgemeinerten Sinne sternförmig:

Sei *S* eine Menge von Strecken in der Ebene und $s \in S$. Dann enthält die Voronoi-Region VR(s) mit jedem Punkt *x* auch die Strecke von *x* zum nächsten Punkt auf *s*.

Beweis: s. Klein 1997.

Insbesondere folgt: VR(s) ist zusammenhängend.

- Achtung: "Halbebene" H(s, s') und VR(s) i.allg. nicht mehr konvex!
- Zwei VR können mehr als eine gemeinsame Kante haben!

Beispiel eines Voronoi-Diagramms von 7 Strecken:

(Klein 1997)

Es gilt:

- Das Voronoi-Diagramm von *n* disjunkten Strecken in der Ebene hat *O*(*n*) viele Knoten und Kanten.
- Jede Kante besteht aus O(1) vielen Stücken.
- Der Rand einer Voronoi-Region enthält im Mittel höchstens 6 Kanten.

(s. Klein 1997)

Berechnung: mit Plane-Sweep analog zu VD von Punkten

wobei die Sweep–Status–Struktur (\rightarrow Wellenfront) statt Parabelbögen P(p,q,r) etwas kompliziertere Strukturen aus Parabeln, Winkelhalbierenden und Mittelsenkrechten verwalten muß

 \rightarrow VD für n Liniensegmente kann in Zeit $O(n\log n)$ berechnet werden.

Anwendung des VD von Strecken bei der Bewegungsplanung für Roboter

- kreisförmiger Roboter (Position = Koordinaten des Mittelpunktes)
- soll von gegebenem Startpunkt zu gegebenem Zielpunkt bewegt werden
- dabei sind Hindernisse zu berücksichtigen (Liniensegmente): Zu keinem Zeitpunkt darf das Innere des Kreises eine der Strecken der Szene schneiden

scheinbar sind unendlich viele mögliche Wege zu testen

 Idee: in jeder Position die Sicherheitsabstände zu den Strecken der Szene maximieren

 \Rightarrow Bewegung längs der Kanten des von den Strecken der Szene definierten VD

(damit "endliches Problem")

Bewegungsplanung für Kreisscheibe R (Roboter) mit Radius rin einer Szene $S \subset \mathbb{R}^2$ aus n Liniensegmenten (Hindernissen) vom Startpunkt $A \in \mathbb{R}^2$ zum Ziel $B \in \mathbb{R}^2$.

Punkt $x \in \mathbb{R}^2$ heißt *kollisionsfrei* : $\Leftrightarrow dist(x, y) \ge r \ \forall y \in s \ \forall s \in S$ Bewegung = kollisionsfreier Weg W (alle Punkte in W kollisionsfrei) Beobachtung: Falls ein kollisionsfreier Weg von A nach B existiert, dann existiert ein kollisionsfreier Weg über Voronoikanten = der Weg, der maximalen Abstand zu den Segmenten einhält

präziser:

Genau dann kann sich der Roboter kollisionsfrei von *A* nach *B* bewegen, wenn sein Radius *r* die Abstände von *A* zum nächsten Punkt y_A der Szene und von *B* zum nächsten Punkt y_B der Szene nicht überschreitet und wenn es eine kollisionsfreie Bewegung von *A*' nach *B*' längs der Kanten des VD *V*(*S*) gibt, wobei *A*' der Schnittpunkt des Strahls von y_A durch *A* mit dem VD ist (*B*' analog).

(aus Klein 1997; A heißt hier s, B heißt t.)

Algorithmus:

(0) Berechne VD(S) $O(n \log n)$ O(n)(1) teste, ob A und B sichere Positionen sind (2) Eliminiere alle (Teil–)Voronoikanten (ggf. aufspalten) emit $\exists x \in e: x$ nicht kollisionsfrei $\rightarrow VD'(S)$ O(n)(3) bestimme VR(s), in dem A liegt, analog VR(s') für $B O(\log n)$ (4) bestimme Voronoikante $e \subset \partial VR(s)$, die das Lot von A auf s schneidet in Punkt A' (analog für $B \to B'$) O(n)Beobachtung: A kollisionsfrei $\rightarrow A'$ und $\overline{AA'}$ kollisionsfrei (5) konstruiere kollisionsfreien Weg W' in VD' von A' nach B' z.B. mit DFS O(n)(6) falls ex.: Ausgabe $W = \overline{AA'} \cup W' \cup \overline{B'B}$ Laufzeit: $O(n \log n)$, Platz O(n)

Folgerung (vgl. Klein 1997):

Ist das Voronoi-Diagramm der n Strecken der Szene vorhanden, lässt sich für einen beliebigen Roboter-Radius r und beliebige Punkte A und B in der Zeit O(n) ein kollisionsfreier Weg von A nach B bestimmen oder aber feststellen, dass es keinen gibt.

Verallgemeinerung auf nicht kreisförmige Roboter:

- der Roboter sei nicht rotierfähig (nur Translationen erlaubt)
- die Form werde durch eine konvexe Menge *C* beschrieben

 \Rightarrow lege für das VD der Strecken die konvexe Distanzfunktion $d_{C'}$ zugrunde, wobei C' die Spiegelung von C am Referenzpunkt ist; Algorithmus lässt sich dann übertragen.