Bildanalyse und Bildverstehen

<u>Aufgabe U15</u> (Granulometrische Kurven)

Man verwendet 3 Arten von Kurven:

- (1.) Anzahl p(a) der Zusammenhangskomponenten (Partikel) von g_aX , aufgetragen gegen a;
- (2.) $A(g_aX)$, aufgetragen gegen a;
- (3.) $A(g_{a-1}X) A(g_aX)$, aufgetragen gegen a ("Musterspektrum von X", pattern spectrum).

Dabei ist A(Z) die Fläche von Z (oder ein anderes Maß).

 g_a sei nun die Öffnung O_{aB} mit aB als Liniensegment der Länge a (a = 1; 2; 3; 4; 5; 6). Man zeichne die drei Kurven für das folgende 1D-Binärbild:

 $0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1$

Aufgabe U16 (Konturkrümmung)

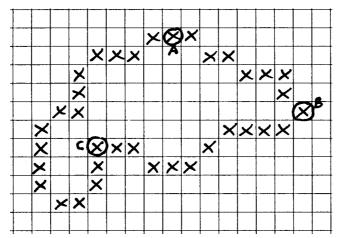
Die Krümmung einer Kontur an einem Punkt p_i wird aus der Folge (p_{i-n} , ..., p_i , ..., p_{i+n}) von 2n+1 aufeinanderfolgenden Konturpunkten berechnet.

Es sind verschiedene Krümmungsmaße für diskrete Kurven in Gebrauch:

- (1) $180^{\circ} \gamma_i$, wobei γ_i der durch die drei Punkte p_{i-n} , p_i , p_{i+n} gegebene Winkel bei p_i ist.
- (2) Die vorzeichenbehaftete Fläche des von diesen drei Punkten aufgespannten Dreiecks (positiv für konvexe und negativ für konkave Krümmung).
- (3) Die Summe gewichteter Differenzen d_i zwischen aufeinanderfolgenden Richtungsindices r_i nach dem Kettencode: r_i = Kettencode der Richtung von p_i nach p_{i+1} , $d_i = (r_i r_{i-1} + 12 \mod 8) 4$,

$$KR_i = \sum_{j=-n}^n w_j d_{i+j}$$
 mit Gewichten $w_j \ge 0$, die sich zu 1 summieren.

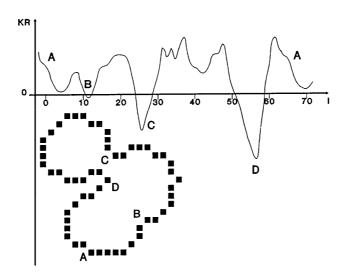
- (a) Man bestimme die Formeln zu den Krümmungsmaßen (1) und (2).
- (b) Man teste die drei Krümmungsmaße an den Punkten A, B und C folgender Kontur und diskutiere ihre Vor- und Nachteile:



(für (1) und (2) wähle man jeweils n = 2, für (3) n = 1 und $w_{-1} = \frac{1}{4}$,

$$w_0 = \frac{1}{2}, \quad w_1 = \frac{1}{4}.$$

Beachte: Die numerischen Werte der Krümmung an einzelnen Stellen sind weniger bedeutsam; interessant sind die Extrema im Verlauf der Krümmung entlang der Kontur. Maxima: potenzielle Ecken bei eckigen konvexen Objekten; Minima: potenziell Stellen, wo 2 sich überlappende konvexe Objekte zu trennen sind, bzw. Kandidatenpunkte für Schnitte durch das Objekt. Beispiel:



(aus Voss & Süße 1991)