Motivatio

Operator Overloading i XL

Chemica Kinetics

Example:

Summar

Specification of Chemical Formulæ in XL with Operator Overloading

Reinhard Hemmerling

University of Göttingen

28 February 2012

Outline

Reinhard Hemmerling

Motivatio

Overloading i

Chemica Kinetics

Example

Summai

Motivation

2 Operator Overloading in XL

3 Chemical Kinetics

4 Examples

5 Summary

Chemica Kinetics

Example

Summar

Motivation

ultimately we want to specify reactions like

$$2H_2 + O_2 \stackrel{k_f}{\rightleftharpoons} 2H_2O$$

- use operator overloading to enable this in XL
- automatically derive differential equations from this and solve these numerically
- possible for elementary reactions via law of mass action

Operator Overloading in XL

Kinetics

Example

Summar

Operator Functions

- like in C++
- define function with special name
- name is operator<symbol>, where<symbol> is one of +, -, *, /, %, ...
- unary vs. binary operators
- count parameters of function
- plus one extra for non-static functions (left operand is this)

Motivatio

Operator Overloading in XL

Chemic

Example

Summai

Operator Functions — Example

```
class Complex {
  double real, imag;

public Complex(double real, double imag) {
    this.real = real;
    this.imag = imag;
}

public static Complex operator+ (Complex a, Complex b) {
    return new Complex(a.real + b.real, a.imag + b.imag);
  }
  ...
}
```

Chemic

Example

Summar

Operator Functions — Conclusion

allows:

```
Complex a = new Complex (1, 2);
Complex b = new Complex (3, 4);
Complex c = a + b;
```

but not yet:

```
Complex d = 1 + a;
Complex e = a + 1;
```

- could be resolved by providing additional operator overloads
- better solutions are implicit conversions

Motivatio

Operator Overloading in XL

Chemica Kinetics

Example

Summar

Implicit Conversion

- like in C++
- extends autoboxing from primitive to reference types
- can be defined in any of the following ways:

```
class C {
  C(S source);
  static C valueOf(S source);
  T toT();
  t tValue();
}
```

• follows existing patterns like toString(), intValue(), etc.

Motivatio

Operator Overloading in XL

Chemica Kinetics

Example

Summai

Implicit Conversion — Example

```
class Complex {
    ...
    @de. grogra . xl . lang . ConversionConstructor
    public C(double d) {
      real = d;
      imag = 0;
    }
}
```

Chemical Kinetics

Example

Summary

Chemical Kinetics — Introduction

reaction equation:

$$\nu_1 A + \nu_2 B + \ldots \longrightarrow \nu_1' A' + \nu_2' B' + \ldots$$

reaction rate:

$$r = -\frac{1}{v_1} \frac{d[A]}{dt} = -\frac{1}{v_2} \frac{d[B]}{dt} = \frac{1}{v_1'} \frac{d[A']}{dt} = \frac{1}{v_2'} \frac{d[B']}{dt} = \dots$$

rate law:

$$r = k[\mathbf{A}]^{\mathbf{v}_1}[\mathbf{B}]^{\mathbf{v}_2} \dots$$

Motivation

Operator Overloading i XL

Chemical Kinetics

Example

Summar

Chemical Kinetics — Parse Tree Generation

in XL:
$$2*H2 + 02 <=> 2*H20;$$

Motivatio

Operator Overloading i XL

Chemical Kinetics

Example

Summar

Chemical Kinetics — Molecule

```
// each entity in the reaction is a molecule
class Molecule {
  // predefine some instances of Molecule so that they
 // can be statically imported into current scope
 public static final Molecule H2 = new Molecule("H2");
 public static final Molecule H2O = new Molecule("H2O");
 public static final Molecule O2 = new Molecule("O2");
  String name:
 public Molecule(String name) {
   this . name = name;
 public String toString() {
   return name:
```

Motivatio

Operator
Overloading in

Chemical Kinetics

Example

Summai

Chemical Kinetics — Reaction Arrow

```
// stores the whole reaction
class ChemicalReaction {
 ChemicalExpression left, right;
 double kf, kb;
// infer reaction from left and right side
public static ChemicalReaction operator<=> (
 ChemicalExpression Ihs, ChemicalExpression rhs)
 ChemicalReaction result = new ChemicalReaction ():
 result.left = lhs;
 result.right = rhs;
 return result:
```

Motivatio

Operator
Overloading in

Chemical Kinetics

Example

Summai

Chemical Kinetics — Chemical Expressions

```
// an expression is a list of terms
class ChemicalExpression {
  final ArrayList < ChemicalTerm > terms =
   new ArrayList < ChemicalTerm > ();
  public void add(ChemicalTerm term) {
    terms.add(term);
// terms are combined by + operator
public static ChemicalExpression operator+ (
  ChemicalExpression expr. ChemicalTerm term)
  expr.add(term);
  return expr;
```

Motivatio

Operator
Overloading i
XL

Chemical Kinetics

Example

Summar

Chemical Kinetics — Chemical Term

```
// factor is stoichiometric coefficient for molecule
class ChemicalTerm {
 double factor:
 Molecule m;
 public ChemicalTerm(Molecule m) {
   this (1, m);
 public ChemicalTerm(double factor, Molecule m) {
   this factor = factor:
   this .m = m:
public static ChemicalTerm operator* (
 double factor, ChemicalTerm term)
 term.factor *= factor;
 return term;
```

Motivatio

Operator
Overloading

Chemical Kinetics

Example

Summar

Chemical Kinetics — Implicit Conversions

Some implicit conversions are needed to cover remaining cases:

- 1) Molecule \rightarrow ChemicalTerm
- 2) Molecule ightarrow ChemicalExpression
- 3) ChemicalTerm \rightarrow ChemicalExpression

Motivatio

Operator Overloading i XL

Chemical Kinetics

Example

Summar

Chemical Kinetics — Application

- put all reactions into a Model
- derive ODEs from reaction equation for numerical integration
- use law of mass action
- need to assign indices to each Molecule
- ullet map Molecule o int with java.util.HashMap
- can then use any standard method for integration

Motivatio

Operator
Overloading i

Chemica Kinetics

Examples

Summai

. . .

```
Example 1 — Reaction

A \xrightarrow{k_1} B \xrightarrow{k_2} C
```

```
const Molecule A = new Molecule("A");
const Molecule B = new Molecule("B");
const Molecule C = new Molecule("C");

public void run()
{
   ChemicalReaction r1 = A <=> B; // first reaction: A -> B
   r1.setForwardRateConstant(2);

   final Model model = new Model();
   model.addSlope(r1);
   model.add(B <=> C, 1); // second reaction: B -> C
```

Motivatio

Operator
Overloading i

Chemica Kinetics

Examples

Summary

Example 1 — Reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

Chemic

Examples

Summar

Example 2 — Michaelis-Menten Kinetics

reaction:

$$E + S \xrightarrow{k_f} ES \xrightarrow{k_{cat}} E + P$$

• in XL:

```
final Model model = new Model();
model.add(E + S <=> ES, 3, 0.1);
model.add(ES <=> E + P, 2);
```

Motivatio

Operator
Overloading i

Chemica Kinetics

Examples

Summary

Example 2 — Michaelis-Menten Kinetics

Motivatio

Operator Overloading i XL

Chemica Kinetics

Example

Summary

Summary

- operator overloading very versatile
- makes chemical reactions part of the language
- syntax checking included
- also other applications
 - right-hand sides of rules
 - iostreams-like input/output
 - retrofit existing classes like BigInteger and BigDecimal with overloaded operators

Specification of Chemical Formulæ in XL with Operator Overloading

Reinhard Hemmerling

Motivatio

Operator
Overloading in
XL

Chemica

Example:

Summary

Thank you for your attention.

Specification of Chemical Formulæ in XL with Operator Overloading

Reinhard Hemmerling

Motivation

Operator
Overloading in
XL

Chemica

Examples

Summary

Specification of Chemical Formulæ in XL with Operator Overloading

Reinhard Hemmerling

Motivatio

Operator
Overloading in
XL

Chemica Kinetics

Examples

Summary

Backup Slides

Motivatio

Operator
Overloading i
XL

Chemics

Example

Summary

```
Example 1 — Reaction A \xrightarrow{k_1} B \xrightarrow{k_2} C
```

```
// assign indices
final HashMap m = new HashMap();
int count = model.assignIndices(0, m);

// allocate memory
double[] y0 = new double[count];
double[] y = new double[count];

// set initial conditions
setValue(m, y0, A, 10);
...
```

Motivatio

Operator
Overloading i
XL

Chemics

Example

Summary

Example 1 — Reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

```
. . .
// prepare differential equations
// getRate() will be called by the integrator
ODE ode = new ODE()
  public void getRate(double[] out,
    double t, double[] y)
    Arrays. fill (out, 0);
    model.eval(out, t, y);
};
```

Motivatio

Operator
Overloading in

Chemica

Example

Summary

. . .

Example 1 — Reaction $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

```
// create numerical solver
Solver solver = new FirstOrderIntegratorAdapter(
   new ClassicalRungeKuttaIntegrator(0.001));
```

Motivatio

Operator
Overloading i

Chemica

Example

Summary

Example 1 — Reaction

 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$

```
// setup monitor function to plot state over time
solver.setMonitor(1, new Monitor()
 public void g(double[] out, double t, double[] y)
   // trigger at 20Hz
   out[0] = sin(PI * t * 20);
 public boolean handleEvent(int i, double t, double[] y)
   // plot data or whatever
   return false:
});
```

Motivatio

Operator
Overloading i
XL

Chemica

Example

Summary

```
Example 1 — Reaction A \xrightarrow{k_1} B \xrightarrow{k_2} C
```

```
// perform integration
solver.integrate(ode, 0, y0, 5, y);
```