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Introduction

• FSPM – Functional Structural Plant Model

• Structure described by L-systems
→ parallel string rewriting

• Function described by differential equations
→ mostly ODEs, but also DDEs, PDEs

• Examples: photosynthesis, partitioning, respiration
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Motivation

• We want to specify ordinary differential equations (ODEs)

dy
dt

= f (t,y)

on a graph structure, and solve them numerically

• But ODEs are continuous, while rule application is discrete

• Often found to be implemented by forward Euler integration
as part of the rewriting step
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Euler integration is bad
(Example from [BSHK+08])
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A-stability

Definition (Dahlquist[Dah63])
A method is called A-stable, if all solutions tend to zero, as n→ ∞,
when the method is applied with fixed positive h to any differential
equation of the form,

dy/dt = λy,

where λ is a complex constant with negative real part.
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Stability of forward Euler

yn+1 = yn +hλyn

yn = (1+hλ )ny0

⇒ stable if |1+hλ |< 1

yn+1 = yn +h · f (tn,yn)
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Region of absolute stability for
forward Euler (z = hλ )
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Stability of backward Euler

yn+1 = yn +hλyn+1

yn =

(
1

1−hλ

)n

y0

⇒ stable if |1−hλ |> 1

⇒ unconditionally stable, but implicit equation must be solved

yn+1 = yn +h · f (tn+1,yn+1)
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Region of absolute stability for
backward Euler (z = hλ )
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Stiffness

Example of Damped Spring [Cas03]
u′′+(λ +1)u′+λu = 0

Converted to set of 1st order ODEs
u′ = z,z′ =−(λ +1)z−λu,λ > 0

Exact solution
u(t) = Ae−t +Be−λ t

Required step size
0 < h < 2 and 0 < h < 2

λ

Compare with
u′ =−u

Exact solution
u(t) = Ae−t

Required step size
0 < h < 2

What if integration was limited
to just [0,1/λ ] ?
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To Euler or not to Euler. . .

Conclusion
Must use other method than Euler, alternatives:

• Runge-Kutta methods

• Multistep methods

• Extrapolation methods

Other interesting features

• Error estimation and variable step size

• Interpolation

• Handling discontinuities in f
• Switching functions
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But . . .

• Implementation can be tricky

• Better resort to some existing library

• Still to convince the biologist
→ must be easy to use
→ make it ’look’ like before

• Handle dynamic/growing structures
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Example: Transport in a tree
Differential equations in the model

Diffusion between nodes A and B

−d[Ac]

dt
=

d[Bc]

dt
= D · ([Ac]− [Bc])

Production, Consumption, Growth

d[Ac]

dt
= PA−CA · [Ac]

d[Al]

dt
= γ ·CA · [Ac]
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Example: Transport in a tree
XL code using Euler integration

/ / apply produc t ion to nodes
a :A : : > a [ carbon ] :+= h ∗ PROD;

/ / apply consumption and conver t to growth
b :B : : > {

double r a te = CONS ∗ b [ carbon ] ;
b [ carbon ] :−= h ∗ r a te ;
b [ leng th ] :+= h ∗ γ ∗ r a te ;

}

/ / perform d i f f u s i o n between nodes
ca :C (−−>)+ : ( cb :C) : : > {

double r a te = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
ca [ carbon ] :−= h ∗ r a te ;
cb [ carbon ] :+= h ∗ r a te ;

}
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Using advanced methods

• Must express as initial value problem (IVP):

y′(t) = f (t,y(t)), y(t0) = y0,

• Need to determine mapping between node attributes and
elements of state vector:

0

1

2

3

4

5

6

7

8

9

...

state
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Using advanced methods
Steps that must be performed

• In main function:
1) Calculate length of state vector
2) Allocate state vector
3) Create mapping between attributes of nodes

and entries in state vector
4) Copy state from graph to state vector
5) Perform integration
6) Copy state from state vector to graph

• In rate function:
1) Initialize rate vector with zero
2) Copy state from state vector to graph
3) Calculate rates using XL rules and accumulate

them in the rate vector
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Using advanced methods
XL code of main function

/ / c a l c u l a t e leng th o f s t a t e vec to r
f i n a l i n t N = 2 ∗ ( i n t ) count ( (∗ C ∗ ) ) ;

/ / a l l o c a t e s ta te vec to r
f i n a l double [ ] y0 = new double [N ] ;
f i n a l double [ ] y = new double [N ] ;

/ / c rea te mapping between a t t r i b u t e s o f nodes
/ / and e n t r i e s i n s ta te vec to r
i n t index = 0;
[ c :C : : > { c [ index ] = index ; index += 2; } ]

/ / copy s ta te from graph to y0
[ c :C : : > y0 [ c [ index ] + 0 ] = c [ carbon ] ; ]
[ c :C : : > y0 [ c [ index ] + 1 ] = c [ leng th ] ; ]

/ / i n t e g r a t e over t ime
i n t e g r a t e ( t ime , y0 , t ime + DT, y ) ;
t ime += DT;

/ / copy s ta te from y to graph
[ c :C : : > c [ carbon ] = y [ c [ index ] + 0 ] ; ]
[ c :C : : > c [ leng th ] = y [ c [ index ] + 1 ] ; ]
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Using advanced methods
XL code of rate function

void getRate ( double [ ] ra te , double t ime , double [ ] s t a t e ) [
/ / zero output ar ray
{ java . u t i l . Arrays . f i l l ( ra te , 0 ) ; }

/ / copy s ta te y to graph
c :C : : > c [ carbon ] = y [ c [ index ] + 0 ] ;
c :C : : > c [ leng th ] = y [ c [ index ] + 1 ] ;

/ / apply produc t ion to A nodes
c :A : : > ra te [ c [ index ] ] += PROD;
/ / apply consumption and conver t to growth
c :B : : > {

double r = CONS ∗ c [ carbon ] ;
r a te [ c [ index ] + 0 ] −= r ;
ra te [ c [ index ] + 1 ] += γ ∗ r ;

}
/ / perform d i f f u s i o n between nodes
ca :C (−−>)+ : ( cb :C) : : > {

double r = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
r a te [ ca [ index ] ] −= r ;
ra te [ cb [ index ] ] += r ;

}
]
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Conclusion

• This basically works, but hard to use

• Especially if attributes are distributed over a class hierarchy

• prone to errors

• Must automatize creation of mapping between graph and
state vector

• Idea: introduction of rate assignment operator :’= to mark
attributes for numerical integration
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Rate assignment operator
XL code of rate function

/ / r a te func t i on , s t a t e i s prov ided i m p l i c i t l y
void getRate ( ) [

/ / apply produc t ion to nodes
a :A : : > a [ carbon ] :’= PROD;

/ / apply consumption and conver t to growth
b :B : : > {

double r a te = CONS ∗ b [ carbon ] ;
b [ carbon ] :’= −r a te ;
b [ len ] :’= γ ∗ r a te ;

}

/ / perform d i f f u s i o n between nodes
ca :C (−−>)+ : ( cb :C) : : > {

double r a te = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
ca [ carbon ] :’= −r a te ;
cb [ carbon ] :’= + ra te ;

}
]
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Monitor Functions

• Needed to communicate with the integrator during
integration

• For instance, to plot state data in regular intervals

• . . . or to stop integration when a condition becomes fulfilled

• . . . to perform structural changes of the graph

• Monitor function g : Rn→ R maps state to (a single) value

• Root finding used to determine exact event time
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Monitor Functions
XL code for branching

/ / i n s t a l l moni tor on every l e a f
a :A : : > moni tor (

/ / moni tor f u n c t i o n g
void=>double a [ carbon ] − T ,
/ / event handler
new Runnable ( ) {

public void run ( ) [
/ / s p l i t i n t o branches wi th l e a f on top
a ==>

[RU( 30) RH(75) B( 0 ) A( a [ carbon ] / 2 ) ]
[RU(−30) RH(75) B( 0 ) A( a [ carbon ] / 2 ) ]

;
]

}
) ;
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Tolerance specification

• Annotate property to request absolute/relative tolerance

• Might be needed in some cases

• Using this information is up to the integrator

• Example:

@Tolerance ( abso lu te=1e−6, r e l a t i v e =1e−4)
double t ;

module A( @Tolerance ( absolu te=1e−4) double n ) ;
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Example: Transport in a tree
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Circular transport with inhibition

S0

S1

S2 S3

S4

d[Si⊕2]

dt
=−d[Si⊕1]

dt
=

{
µ · [Si⊕1] if [Si]≤ T
0 otherwise.
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Circular transport with inhibition
XL code to model this

/ / apply ODE to each t r i p l e ( x , y , z )
x :S −EDGE_0−> y :S −EDGE_0−> z :S : : > {

double r a te = x [ c ] > T ? 0 : µ ∗ y [ c ] ;
y [ c ] :’= −r a te ;
z [ c ] :’= + ra te ;

}
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Circular transport with inhibition
Resulting transport
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dL-systems in XL
dL-system of Anabaena catenula

initial string: Fh(xmax,cmax) Fv(xmax,cmax) Fh(xmax,cmax)
F(xl,cl)< Fv(x,c)> F(xr,cr) :

if x < xmax & c > cmin

solve dx
dt = rx, dc

dt = D · (cl + cr−2c)−µc
if x = xmax & c > cmin

produce Fv(kxmax,c) Fv((1− k)xmax,c)
if c = cmin

produce Fh(x,c)
Fh(x,c) :

solve dx
dt = rx(xmax− x), dc

dt = rc(cmax− c)
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dL-systems in XL
XL code for Anabaena catenula — rate function

/ / vege ta t i ve c e l l s
F( x l , c l ) f v :FV( x , c ) F ( xr , c r ) : : > {

f v [ x ] :’= R ∗ x ;
f v [ c ] :’= D ∗ ( c l − 2∗c + cr ) − MU ∗ c ;

}

/ / h e t e r o c y s t i c c e l l s
fh :FH( x , c ) : : > {

fh [ x ] :’= R_X ∗ (X_MAX − x ) ;
fh [ c ] :’= R_C ∗ (C_MAX − c ) ;

}
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dL-systems in XL
XL code for Anabaena catenula — monitor functions

/ / se t moni tor f o r reaching maximum leng th
f v :FV : : > moni tor ( void=>double f v [ x ] − X_MAX,

new Runnable ( ) {
public void run ( ) [

f v ==> FV(K∗X_MAX, f v [ c ] ) FV((1−K)∗X_MAX, f v [ c ] ) ;
]

} ) ;

/ / se t moni tor f o r reaching minimum concen t ra t i on
f v :FV : : > moni tor ( void=>double f v [ c ] − C_MIN,

new Runnable ( ) {
public void run ( ) [

f v ==> FH( f v [ x ] , f v [ c ] ) ;
]

} ) ;
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dL-systems in XL
Simulation results
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Summary

• Combination between discrete (graph rewriting rules) and
continuous (ODE) processes

• User does not have to reimplement numerical integrators

• Numerical integration method can be exchanged easily

• Enhanced accuracy and stability

• Separation between integration of ODEs
and structural changes in the graph

• Used in [HSK10, HEK10, EvdK10, SBSHK10]
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Thank you for your attention.
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