
Tutorial and workshop „Modelling with GroIMP
and XL“ / Tutorial for beginners
University of Göttingen, 27 February, 2012

Winfried Kurth

Basic examples in XL (part 2)

Context sensitivity

Query for a context which must be present to make a rule
applicable

specification of the context in (* *)

example:

module A(int age);
module B(super.length, super.color) extends F(length, 3, color);
Axiom ==> A(0);
A(t), (t < 5) ==> B(10, 2) A(t+1); // 2 = green
A(t), (t == 5) ==> B(10, 4); // 4 = red
B(s, 2) (* B(r, 4) *) ==> B(s, 4);
B(s, 4) ==> B(s, 3) [RH(random(0, 360)) RU(30) F(30, 1, 14)]; // 3 = blue

test the examples

sm09_e14.rgg usage of a left context

sm09_e15.rgg usage of a right context

The step towards graph grammars

drawback of L-systems:

• in L-systems with branches (by turtle commands)
 only 2 possible relations between objects:
 "direct successor" and "branch"

extensions:

• to permit additional types of relations
• to permit cycles

→ graph grammar

a string:
a very simple graph

 a string can be interpreted as a 1-
dimensional graph with only one type of
edges

 successor edges (successor relation)

ABA AAC CAB

graph grammars

example
rule:

to make graphs dynamic, i.e., to let them change over
time:

A relational growth grammar (RGG)
(special type of Graph grammar)

contains:
 an alphabet

– the definition of all allowed
• node types
• edge types (types of relations)

 the Axiom

– an initial graph, composed of elements of the
alphabet

 a set of graph replacement rules.

How an RGG rule is applied

 each left-hand side of a rule describes a
subgraph (a pattern of nodes and edges,
which is looked for in the whole graph),
which is replaced when the rule is
applied.

 each right-hand side of a rule defines a
new subgraph which is inserted as
substitute for the removed subgraph.

a complete RGG rule can have 5 parts:

 (* context *), left-hand side, (condition)
==>

 right-hand side { imperative XL code }

in text form we write (user-defined) edges as

-edgetype->

edges of the special type "successor" are usually written as
a blank (instead of -successor->)

also possible: >

2 types of rules for graph replacement in XL:

● L-system rule, symbol: ==>

provides an embedding of the right-hand side into
the graph (i.e., incoming and outgoing edges are
maintained)

● SPO rule, symbol: ==>>

incoming and outgoing edges are deleted (if their
maintenance is not explicitely prescribed in the rule)

„SPO“ from „single pushout“ – a notion from universal algebra

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

start
graph: A B C

example:

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A B C

D E A

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A B C

D E A

a:

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A AD Ea:

C
= final result

test the example sm09_e27.rgg :

module A extends Sphere(3);

protected void init()
[Axiom ==> F(20, 4) A;]

public void runL()
[
 A ==> RU(20) F(20, 4) A;
]

public void runSPO()
[
 A ==>> ^ RU(20) F(20, 4, 5) A;
]

(^ denotes the root node in the current graph)

Mathematical background:

Chapter 4 of Ole Kniemeyer‘s doctoral dissertation
(http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:kobv:co1-
opus-5937).

The language XL

• extension of Java

• allows also specification of L-systems and RGGs
 (graph grammars) in an intuitive rule notation

procedural blocks, like in Java: { ... }

rule-oriented blocks (RGG blocks): [...]

example: XL programme for the Koch curve (see part 1)

public void derivation()
 [
 Axiom ==> RU(90) F(10);
 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
]

Features of the language XL:

● nodes of the graph are Java objects (including geometry objects)

nodes of the
graph

edges (type „successor“)

 special nodes:

 geometry objects

 Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...

 access to attributes by parameter list:

Box(x, y, z) (length, width, height)

 or with special functions:

 Box(...).(setColor(0x007700)) (colour)

special nodes:

 geometry objects

 Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...

 transformation nodes

 Translate(x, y, z), Scale(cx, cy, cz), Scale(c),

 Rotate(a, b, c), RU(a), RL(a), RH(a), RV(c), RG, ...

 light sources

 PointLight, DirectionalLight, SpotLight, AmbientLight

Features of the language XL:

● rules organized in blocks [...], control of application
 by control structures

example: rules for the stochastic tree

Axiom ==> L(100) D(5) A;

A ==> F0 LMul(0.7) DMul(0.7)
 if (probability(0.5))
 ([RU(50) A] [RU(-10) A])
 else
 ([RU(-50) A] [RU(10) A]);

Features of the language XL:

● parallel application of the rules

 (can be modified: sequential mode can be switched on, see below)

Features of the language XL:

● parallel execution of assignments possible

special assignment operator := besides the normal =

quasi-parallel assignment to the variables x and y:

 x := f(x, y);
 y := g(x, y);

Features of the language XL:

● operator overloading (e.g., „+“ for vectors as for numbers)

 (see later presentation by Reinhard Hemmerling)

Features of the language XL:

● set-valued expressions (more precisely: producer instead of sets)

● graph queries to analyze the actual structure

example for a graph query:

binary tree, growth shall start only if there is enough distance
to other F objects

Axiom ==> F(100) [RU(-30) A(70)] RU(30) A(100);
a:A(s) ==> if (forall(distance(a, (* F *)) > 60))
 (RH(180) F(s) [RU(-30) A(70)] RU(30) A(100))

 without the „if“ condition with the „if“ condition

query syntax:

a query is enclosed by (* *)

The elements are given in their expected order, e.g.:
(* A A B *) searches for a subgraph which consists of a
sequence of nodes of the types A A B, connected by
successor edges.

Queries as generalized contexts:

test the examples sm09_e28.rgg, sm09_e29.rgg,
sm09_e30.rgg

Features of the language XL:

● aggregating operators (e.g., „sum“, „mean“, „empty“, „forall“,
 „selectWhereMin“)

can be applied to set-valued results of a query

Queries and aggregating operators

provide possibilities to connect structure and
function

example: search for all leaves which are successors of node
c and sum up their surface areas

transitive closure

aggregation operator

result can be
transferred to an
imperative calculation

query

Queries in XL

test the examples

sm09_e31.rgg,
sm09_e35.rgg,
sm09_e36.rgg

for light interception / photosynthesis:

a simple model of overshadowing
using a query referring to a geometric region in space

model approach (strongly simplifying):
overshadowing of an object occurs when there are further
objects in an imagined cone with its apex in the object, opened
into z direction (to the sky).

example:

sm09_e42.rgg competition of three 2-dimensional model
 plants for light

module Segment(int t, int ord) extends F0;
module TBud(int t) extends F(1, 1, 1);
module LBud extends F(0.5, 0.5, 1);

Vector3d z = new Vector3d(0, 0, 1);

protected void init()
 [
 Axiom ==> P(2) D(5) V(-0.15) [TBud(-4)] RU(90) M(600) RU(-90)
 [TBud(0)] RU(-90) M(1200) RU(90)
 [TBud(-8)];
]

public void run()
 [
 TBud(t), (t < 0) ==> TBud(t+1);
 x:TBud(t), (t >= 0 && empty((* s:Segment, (s in cone(x, z, 45)) *))) ==>
 L(random(80, 120)) Segment(0, 0)
 [MRel(random(0.5, 0.9)) RU(60) LBud]
 [MRel(random(0.5, 0.9)) RU(-60) LBud] TBud(t+1);
 y:LBud,
 (empty((* s:Segment, (s in cone(y, z, 45)) *))) ==>
 L(random(60, 90) Segment(0, 1) RV0 LBud;
 Segment(t, o), (t < 8) ==> Segment(t+1, o);
 Segment(t, o), (t >= 8 && o == 1) ==>> ; /* removal of the whole branch */
]

Representation of graphs in XL

● node types must be declared with „module“

● nodes can be all Java objects.
 In user-made module declarations, methods (functions) and
 additional variables can be introduced, like in Java

● notation for nodes in a graph:
 Node_type, optionally preceded by: label:
 Examples: A, Meristem(t), b:Bud

● notation for edges in a graph:

 -edgetype->, <-edgetype-

● special edge types:
 successor edge: -successor->, > or (blank)
 branch edge: -branch->, +> or [
 refinement edge: />

Notations for special edge types

> successor edge forward

< successor edge backward

--- successor edge forward or backward

+> branch edge forward

<+ branch edge backward

-+- branch edge forward or backward

/> refinement edge forward

</ refinement edge backward

--> arbitrary edge forward

<-- arbitrary edge backward

-- arbitrary edge forward or backward
(cf. Kniemeyer 2008, p. 150 and 403)

user-defined edge types

const int xxx = EDGE_0; // oder EDGE_1, ..., EDGE_14

...

usage in the graph: -xxx->, <-xxx-, -xxx-

Notation of graphs in XL

example:

is represented in programme code as

(the representation is not unique!)

(>: successor edge, +: branch edge)

derived relations

relation between nodes connected by several edges (one
after the other) of the same type:

„transitive hull“ of the original relation (edge)

Notation for the transitive hull in XL:

(-edgetype->)+

reflexive-transitive hull („node stands in relation to itself“
also permitted):

(-edgetype->)*

e.g., for the successor relation: (>)*

common transitive hull of the special relations
„successor“ and „branch“, in reverse direction:

-ancestor->
interpretation: this relation is valid to all „preceding nodes“
in a tree along the path to the root.

nearest successors of a certain node type:

-minDescendants-> (nodes of other types are skipped)

successor edge

branch edge

relation
„ancestor“

minDescendants

The current graph

GroIMP maintains always a graph which contains the
complete current structural information. This graph is
transformed by application of the rules.

Attention: Not all nodes are visible objects in the 3-D view of
the structure!

- F0, F(x), Box, Sphere: yes

- RU(30), A, B: normally not (if not derived by „extends“
 from visible objects)

The graph can be completely visualized in the 2-D graph
view (in GroIMP: Panels - 2D - Graph).

Load an example RGG file in GroIMP and execute some
steps (do not work with a too complex structure).

Open the 2-D graph view, fix the window with the mouse in
the GroIMP user interface and test different layouts (Layout
- Edit).

Keep track of the changes of the
graph when you apply the rules
(click on „redraw“)!

which parts of the current graph of GroIMP are visible
(in the 3-d view) ?

all geometry nodes which can be accessed from the root
(denoted ^) of the graph by exactly one path, which consists
only of "successor" and "branch" edges

How to enforce that an object is visible in any case:

==>> ^ Object

a further type of rules:

actualization rules

often, nothing at the graph structure has to be changed, but
only attributes of one single node are to be modified (e.g.,
calculation of photosynthesis in one leaf).

For this purpose, there is an extra rule type:

A ::> { imperative code };

Test the examples sm09_e25.rgg, sm09_e16.rgg,
sm09_e17.gsz, sm09_e18.rgg

and concerning the access to node attributes: sm09_e26.rgg

Suggestions for team session:

Create the following simple branching patterns with XL

Suggestions for team session:

Create the following patterns as textured structures with XL

make queries in the generated structures

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	a string: a very simple graph
	Folie 6
	A relational growth grammar (RGG) (special type of Graph grammar) contains:
	How an RGG rule is applied
	a complete RGG rule can have 5 parts:
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45

