
Tutorial and workshop „Modelling with GroIMP
and XL“ / Tutorial for beginners
University of Göttingen, 27 February, 2012

Winfried Kurth

Introduction to rule-based programming,
L-systems and XL

Motivation
Functional-structural plant models (FSPM)

 „model triangle“:

• Linking of botanical structures and functions
 (e.g., light interception, water flow) in a
 coherent, single model

• processes linked to morphological objects

statistics

aggregated models

structural models

morphology

process models

physiology

functional-structural

models

Structural models

3 levels:

1. static description of structure

 plant at a fixed date (e.g., at 27 September 2011)

2. dynamic description of structure, non-sensitive

 description of development (ontogenesis) of a
 plant:
 time series of 3-dimensional structures

3. dynamics, taking causal impacts / conditions into account
 (sensitive models)

 different paths of development
 logical conditions for the decision between them
 (simplest case: stochastic)

concerning 1.: static description of structure

two approaches:

(a) tables

 each morphological unit of a plant = one row

 dtd code = „descriptive tree data“, or mtg code

(b) imperative (command-driven):

 „Turtle geometry“

 virtual turtle „constructs“ the structure,

 the description are the commands which control it

 turtle geometry command language

The second level of description:

Dynamic description of plant structures

• how do plants change during ontogenesis?

The approach of AMAP

Atelier de Modélisation de l‘Architecture des Plantes

Montpellier, Paris, Beijing (LIAMA)

Ph. de Reffye, R. Lecoustre, M. Jaeger, E. Costes,
P. Dinouard, F. Blaise, P.-H. Cournède et al.
(agronomists, computer scientists, botanists, mathematicians)

Modelling the activity of meristems

shape of tree = trajectory of its meristems

approach for modelling:

shape of tree = trajectory of meristems

• primary meristem

• branching

• secondary meristem

(to be added:
mechanic deformations, deformations with physiological causes,
damages, processes of senescence and mortality)

meristem-based modelling approach

Adrian D. Bell 1979:

3 basic processes
- formation of a shoot (growth)
- transition to resting state (and new activation)
- death

similarly de Reffye 1981:

3 meristem states

- dormance (sleeping)
- croissance (growth)
- mortalité (death)

state transitions with probabilities
→ binomial distribution, Markov chains

The software GroIMP
„Growth-grammar related Interactive Modelling Platform“

• download from Sourceforge (free & open source)

• rgg files, projects (gsz files)

• editor, environment for development

• window for 3-d view

• 2-d (graph) window (usually hidden!)

• attribute view for each object

• camera position

• navigation

• interactive modelling

• compiler for the programming language XL

• framework for solving ODEs in the context of plant models

XL: a multi-paradigm language

Robert Floyd 1978:

Turing Award Lecture

"The Paradigms
of Programming"

Robert W. Floyd (1936-2001)

Ecosystem:

organisms

behaviour
(under certain
conditions)

processes

describe structure

determine laws (rules)
controlling behaviourcalculate effects

Some important paradigms of programming

- for numerical simulation of processes:

imperative paradigm
(also: von-Neumann paradigm,
control flow paradigm)

John von Neumann (1903-
1957)

imperative programming:

computer = machine for the manipulation of values of
variables

(these manipulations can have side effects).

programme = plan for the calculation process with
specification of the commands and of the control flow
(e.g. loops).

example:

x = 0;
while (x < 100)
 x = x + 1;

programming languages which support imperative
programming:

Fortran, Pascal, C, ..., parts of Java, ...,
command language of turtle geometry

Turtle:

goes according to commands

F0

F0

F0 RU(90)

F0 RU(90)

F0 RU(90) F0

F0 RU(90) F0

F0 RU(90) F0 RU(90) LMul(0.5) F0

F0 RU(90) F0 RU(90) LMul(0.5) F0

object-oriented paradigm

computer = environment for virtual objects

programme = list of (object) classes, i.e. general
specifications of objects, which can be created and
destroyed at runtime.

programming languages: Smalltalk, Simula, C++, Java, ...

Inheritance of
attributes and
methods from
superclasses to
subclasses

example:

public class Car extends Vehicle
 {
 public String name;
 public int places;
 public void show()

{
System.out.println("The car is a " + name);
System.out.println("It has " + places + "places.");
}

 }

typical:

classes (Car) with data (name, places) and methods
(show)

usefulness of object hierarchies in biology

for example:

organ

leaf flower internode root segment

broad
leaf

needle coarse
r.s.

fine
r.s.

rule-based paradigm

computer = machine transforming structures

There is a current structure (in XL: a graph) which is
transformed as long as it is possible.
Work process: search and application.
matching: search for a suitable rule,
rewriting: application of the rule, thereby transformation of the structure.

programme = set of transformation rules

to find a programme: specification of rules.

programming languages: L-system languages, AI languages,
Prolog, ...

Example:

a graph grammar

rule:

Example:

a graph grammar

rule:

application:

rule systems for the replacement of
character strings

in each derivation step parallel
replacement of all characters for
which there is one applicable rule

by A. Lindenmayer (botanist)
introduced in 1968 to model growth
of filamentous algae

L-systems (Lindenmayer systems)

Aristid Lindenmayer (1925-1989)

Dynamical description of structures

L-systems mathematically:

a triple (Σ, α, R) with:

Σ a set of characters, the alphabet,

α a string with characters from Σ, the start word (also
"Axiom"),

R a set of rules of the form

character → string of characters;

with the characters taken from Σ.

A derivation step (rewriting) of a string consists of the
replacement of all of its characters which occur in left-hand
sides of rules by the corresponding right-hand sides.

Convention: characters for which no rule is applicable stay
as they are.

Result:

Derivation chain of strings, developed from the start word
by iterated rewriting.

α → σ1 → σ2 → σ3 →

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

A

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

B

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

AB

parallel replacement

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

BAB

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

BAB

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

ABBAB

Example:

alphabet {A, B}, start word A

set of rules:

A → B
B → AB

derivation chain:
A → B → AB → BAB → ABBAB → BABABBAB
 → ABBABBABABBAB → BABABBABABBABBABABBAB
 → ...

still missing for modelling biological structures in space:
 a geometrical interpretation

Thus we add:

a function which assigns to each string a subset of 3-D space

„interpreted“ L-system processing

α → σ1 → σ2 → σ3 →

 ↓ ↓ ↓
 S1 S2 S3

S1, S2, S3, ... can be seen as developmental steps of an

object, a scene or an organism.

For the interpretation:

turtle geometry

the turtle command set becomes a subset of the
character set of the L-system.

Symbols which are not turtle commands are ignored by
the turtle.

→ connection with imperative paradigm

imperative object oriented rule based

Java

XL

XL: a synthesis of three paradigms

„eXtended L-system language“

programming language which makes parallel graph-
grammars (RGG) accessible in a simple way

F0 RU(90) F0 RU(90) LMul(0.5) F0

turtle geometry

 Turtle geometry

„turtle": virtual device for drawing or construction
in 2-D or 3-D space

- able to store information (graphical and non-
graphical)

- equipped with a memory containing state
information (important for branch construction)

- current turtle state contains e.g. current line
thickness, step length, colour, further properties
of the object which is constructed next

Turtle commands in XL (selection):

F0 "Forward", with construction of an element
 (line segment, shoot, internode...),
 uses as length the current step size

(the zero stands for „no explicit specification of length")

M0 forward without construction (Move)

L(x) change current step size (length) to x

LAdd(x) increment the current step size to x

LMul(x) multiply the current step size by x

D(x), DAdd(x), DMul(x) analogously for current
 thickness

Repetition of substrings possible with "for"

e.g., for ((1:3)) (A B C)

yields A B C A B C A B C

what is the result of the interpretation of

L(10) for ((1:6))
 (F0 RU(90) LMul(0.8)) ?

L(10) for ((1:6))
 (F0 RU(90) LMul(0.8))

further example:

for ((1:20)) (for ((1:36))

 (F0 RU(165) F0 RU(165)) RU(270))

further example:

for ((1:20)) (for ((1:36))

 (F0 RU(165) F0 RU(165)) RU(270))

Extension to 3-D graphics:

turtle rotations by 3 axes in space

head

left

up

Extension to 3-D graphics:

turtle rotations by 3 axes in space

RHRL

RU

Extension to 3-D graphics:

turtle rotations by 3 axes in space

3-D commands:

RU(45) rotation of the turtle around the "up" axis by 45°

RL(...), RH(...) analogously by "left" and "head" axis

up-, left- and head axis form an orthogonal spatial coordinate
system which is carried by the turtle

RV(x) rotation "to the ground" with strength given by x

RG rotation absolutely to the ground (direction (0, 0, -1))

Example:

L(100) D(3) RU(-90) F(50) RU(90) M0 RU(90) D(10) F0 F0

D(3) RU(90) F0 F0 RU(90) F(150) RU(90) F(140) RU(90)

M(30) F(30) M(30) F(30) RU(120) M0 Sphere(15)
generates

Branches:
realization with memory commands

[put current state on stack
 ("Ablage", Stack)

] take current state from stack
 and let it become the current state
 (thus: end of branch!)

F0 [RU(-20) F0] RU(20) DMul(2) F0

How to execute a turtle command sequence
with GroIMP

write into a GroIMP project file (or into a file with filename
extension .rgg):

protected void init()

 [

 Axiom ==> turtle command sequence ;

]

Example: Drawing a triangle

protected void init()
 [Axiom ==> RU(30) F(10) RU(120) F(10) RU(120) F(10)]

see file sm09_e01.rgg

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Example: Drawing a triangle

