

GPUFlux – a new radiation model using the GPU

Gerhard Buck-Sorlin
UMR1345 Institut de Recherche en Horticulture et Semences (IRHS)
Équipe Arboriculture Fruitière
AGROCAMPUS OUEST Centre d’Angers - INRA - Université d’Angers.

Introduction

So … why yet another light model?

• CPU: Processing a MC model is THE
bottleneck in any FSPM

Introduction

Dietger van Antwerpen

* Technical University Delft,
the Netherlands
* Internship at WUR, 1.3.11 –
 31.8.2011
* Project « Biosolar Cells »

Introduction

• Monte-Carlo light tracer as part of GroIMP
• Spectral light transport simulation
• Conversion of absorbed light spectrum into
products of photosynthesis at individual leaf
level
• High performance
• Platform independence

Methods

• light tracer utilizes available computing resources
through OpenCL
• OpenCL (Open Computing Language):

• first open, royalty-free standard for general-purpose
parallel programming of heterogeneous systems.
• provides uniform programming environment for software
developers to write efficient, portable code…
• …using a diverse mix of multi-core CPUs and other
parallel processors.

• During simulation: each object keeps track of the
amount of light it absorbs
• Computation of:

• a fully discretized absorption spectrum or
• several integrated weighted spectra

Figure 1. GroIMP supports full spectral rendering.

(effects due to subsurface scatting and participating
media are ignored)

Figure 2. Splatted visualization of the light tracer after a few seconds on an NVIDIA
GeForce GTX 480. The rendered image shows a cut-rose production system with
upright and bent shoots, with a total of 48696 objects: leaves, internodes, flowers,
plus inanimate objects (slabs, benches).

Dense sensor clouds lead to large
variations in path depths. This
significantly reduces SIMD*
efficiency on the GPU.

To improve performance, sensors and
geometry are handled using separate
acceleration structures: Each ray is first
intersected with the geometry, after which the
corresponding ray segment is traced against
the sensors.

*Single Instruction stream Multiple Data stream. The instruction execution architecture of a vector processor (a
CPU or GPU that performs one operation on multiple sets of data simultaneously).

To focus computing power, spectral wavelengths are sampled
proportional to a user specified spectral importance function and the
spectral emission distribution of each light source:

Spectral Importance Sampling

Spectral emission distribution: Spectral importance:
Spectral importance combined
with light source:

Platform Independence
The combination of Java and OpenCL results in near-platform
independence with high performance on heterogeneous systems.

Some disadvantages:
• Little room for platform specific low level optimizations
• Platform specific bugs
• OpenCL + Java complicates debugging
• OpenCL kernel compilation is slow for large kernels

• only useful when all materials and light sources are defined over
the entire simulated spectrum (issue of data availability)

FluxLightModel lm = new FluxLightModel(200000,10);

lm.setMeasureMode(MeasureMode.RGB);
lm.setMeasureMode(MeasureMode.FULL_SPECTRUM);
lm.setMeasureMode(MeasureMode.INTEGRATED_SPECTRUM);

lm.compute(true, true); // compute light rebuilding ALL scene objects
lm.compute(true, false); //compute light rebuilding only light sources

1) define lamp module:
module SONTlamp (float power) extends LightNode()
{
{setLight(new SpectralLight(getSpectralCurve()).(

setPower(power),
 setLight(new PhysicalLight().(setDistribution(ldi)))

) // end SpectralLight
); // end setLight
}

} // end lamp

 protected static SpectralCurve getSpectralCurve()
 {
 IrregularSpectralCurve spdr = new
 IrregularSpectralCurve(wb,pd);
 return spdr;
 }

 static float[] wb = 380,385,390,395,…,765,770,775,780};
 static float[] pd = {0.000967721,0.000980455,…,

0.001973642,0.001986376};
 static LightDistribution ldi = new LightDistribution(breed);

(breed: double array with measured light distribution values per solid angle)

2) insert lamp into scene: SONTlamp(pow(time, mar1))

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

